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ABSTRACT

BACKGROUND AND PURPOSE: A number of parameters derived from dynamic contrast-enhanced MR imaging and separate histologic
features have been identified as potential prognosticators in high-grade glioma. This study evaluated the relationships between dynamic
contrast-enhanced MRI– derived parameters and histologic features in glioblastoma multiforme.

MATERIALS AND METHODS: Twenty-eight patients with newly presenting glioblastoma multiforme underwent preoperative imaging
(conventional imaging and T1 dynamic contrast-enhanced MRI). Parametric maps of the initial area under the contrast agent con-
centration curve, contrast transfer coefficient, estimate of volume of the extravascular extracellular space, and estimate of blood
plasma volume were generated, and the enhancing fraction was calculated. Surgical specimens were used to assess subtype and
were graded (World Health Organization classification system) and were assessed for necrosis, cell density, cellular atypia, mitotic
activity, and overall vascularity scores. Quantitative assessment of endothelial surface area, vascular surface area, and a vascular
profile count were made by using CD34 immunostaining. The relationships between MR imaging parameters and histopathologic
features were examined.

RESULTS: High values of contrast transfer coefficient were associated with the presence of frank necrosis (P � .005). High values of the
estimate of volume of the extravascular extracellular space were associated with a fibrillary histologic pattern (P � .01) and with
increased mitotic activity (P � .05). No relationship was found between mitotic activity and histologic pattern, suggesting that the
correlation between the estimate of volume of the extravascular extracellular space and mitotic activity was independent of the
histologic pattern.

CONCLUSIONS: A correlation between the estimate of volume of the extravascular extracellular space and mitotic activity is
reported. Further work is warranted to establish how dynamic contrast-enhanced MRI parameters relate to more quantitative
histologic measurements, including markers of proliferation and measures of vascular endothelial growth factor expression.

ABBREVIATIONS: DCE-MRI � dynamic contrast-enhanced MRI; EnF � enhancing fraction; GBM � glioblastoma multiforme; IAUC60 � initial area under the
contrast agent concentration curve; Ktrans � contrast transfer coefficient; ve � volume of the extravascular extracellular space per unit tissue volume; VEGF � vascular
endothelial growth factor; vp � volume of the blood plasma per unit tissue volume

Gliomas are the most common primary cerebral tumor of

adulthood. They are histologically classified according to the

World Health Organization criteria into tumor grade and sub-

type,1 which are important for determining appropriate treat-

ment. Within given histologic subtypes and tumor grades, a num-

ber of additional descriptive histopathologic features have been

identified as prognosticators, including mitotic activity,2-4 micro-

vascular density,5,6 and certain vascular patterns.7,8 Both prolif-

eration markers, Ki-672-4,7,9,10 and expression of vascular endo-

thelial growth factor (VEGF),3,5,11-14 have also shown a

relationship to survival.

Dynamic contrast-enhanced MR imaging (DCE-MR imag-

ing) techniques generate a number of parameters that character-

ize the microvascular environment. The enhancing fraction (EnF)

describes the proportion of perfused tumor tissue. CBV and CBF
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are commonly derived from dynamic susceptibility contrast tech-

niques, while the volume transfer coefficient (Ktrans), fractional

volume of the extravascular extracellular space (ve), and fractional

blood plasma volume (vp) can be calculated from T1-weighted

DCE-MR imaging.15 In glioma, Ktrans, vp, EnF, CBV, and CBF

have been shown to relate to histologic grade and/or subtype of

tumor.16-21 In addition, Ktrans, EnF, and CBV have been identified

as potentially grade-independent prognosticators.22-25 The num-

ber of studies examining the relationship between DCE-MR im-

aging parameters and more specific histopathologic features in

glioma is currently small and this research predominantly focuses

on vascular metrics such as blood volume and flow; however,

significant correlations have been described between CBV and

microvascular density,26-29 VEGF expression,27,30 cell density,29

endothelial proliferation,31 and mitotic activity31 and between

CBF and endothelial hyperplasia.32

More recent studies have focused on the potential of ve as an

imaging biomarker. In glioma, it has shown value in discriminat-

ing histologic grades,33,34 but compared with other potential can-

didate biomarkers of the extravascular extracellular space vol-

ume (ADC), on a voxel by voxel basis, no correlation was seen

between the 2 metrics, suggesting that these parameters pro-

vide independent information about extravascular extracellu-

lar space characteristics.35 Two separate studies of patients

with gliomas of various histologic grades have both reported

significant correlations between both Ktrans and ve and vascular

and microvascular density,33,34 but neither study comments

on the relationship with cellular density or mitotic activity. A

high-field, 7T MR imaging study of rat xenografts showed an

image-matched significant negative correlation between ve and

tumor cellularity.36

We hypothesized the following: 1) Larger, rapidly growing tu-

mors would show higher mitotic activity and high angiogenic

activity reflected by Ktrans and EnF; and 2) more proliferative tu-

mors would have a higher cellular density and mitotic activity

associated with lower values of ve.

MATERIALS AND METHODS
Patients
Ethical approval was obtained, and all patients gave informed

consent. All tumors were histologically confirmed as glioblastoma

multiforme (GBM) according to the World Health Organization

criteria.1 All imaging was preoperative, and patients received no

treatment other than corticosteroids, which were administered

for a minimum of 48 hours before imaging to allow stabilization

of the effects of steroids on DCE-MR imaging measures.37 Pa-

tients were excluded from the study if they had a history of renal

dysfunction or low estimated glomerular filtration rate (�30 mL/

min/1.73 m2).

MR Imaging Data Acquisition
Imaging was performed on a 3T Achieva system (Philips Health-

care, Best, the Netherlands) by using a sensitivity encoding head

coil. DCE-MR imaging was acquired in a sagittal oblique orienta-

tion to allow improved definition of the arterial input function

free from flow-related artifacts. Three precontrast T1 fast-field

echo (radiofrequency spoiled gradient-echo) series (2°, 5°, 16°)

were acquired for calculation of baseline T1 maps (TR, 3.5 ms; TE,

1.1 ms; section thickness, 4.2 mm; matrix, 128 � 128; FOV, 230 �

230 � 105 mm) in the same geometry. A dynamic, contrast-en-

hanced acquisition series (TR, 3.5 ms; TE, 1.1 ms; flip angle, 16°;

section thickness, 4.2 mm; matrix, 128 � 128; FOV, 230 � 230 �

105 mm) consisting of 100 volumes with temporal spacing of

approximately 3.4 seconds followed. A bolus dose of 0.1 mmol/kg

(body weight) of gadolinium-based contrast agent (gadodiamide;

Gd-DTPA-BMA; Omniscan; GE Healthcare, Piscataway, New

Jersey) was injected at a rate of 3 mL/s, after acquisition of the fifth

image volume. Pre- and postcontrast T1-weighted imaging se-

quences (TR, 9.3 ms; TE, 4.6 ms) were acquired in the same sag-

ittal oblique geometry for definition of the volume of interest of

the whole tumor.

MR Imaging Data Analysis
An experienced neuroradiologist (S.J.M.) manually defined VOIs

for each tumor. The VOI corresponded to the enhancing tumor

and all nonenhancing tissue contained within it on the postcon-

trast T1-weighted images. This technique of VOI definition has

previously shown good interobserver agreement (intraclass cor-

relation coefficient � 0.94).38 Pharmacokinetic analysis was per-

formed on all pixels within the VOI that showed significant en-

hancement. Parametric maps of Ktrans, vp, ve, and initial area

under the contrast agent concentration curve (IAUC60) were pro-

duced by using in-house software (MaDyM; Manchester Dy-

namic Modeling, Manchester, UK) and the extended Tofts and

Kermode pharmacokinetic model.15 Automated arterial input

functions were generated from an appropriately chosen section,

which included the internal carotid artery.39 Summary statistics

for each parameter were generated for enhancing tumor tissue.

For each tumor, EnF initial area under the contrast agent

concentration curve (EnFIAUC60�0) and thresholded EnF

(EnFIAUC60�2.5) were calculated by dividing the enhancing vol-

ume (volume of voxels with IAUC60 � 0 mmol/s for EnFIAUC60�0

and the volume of voxels with IAUC60 � 2.5 mmol/s for

EnFIAUC60�2.5) by the total volume of the tumor VOI. The cutoff

threshold of IAUC60 � 2.5 mmol/s for EnFIAUC60�2.5 was previ-

ously identified as an optimal threshold for allowing the distinc-

tion of high- from low-grade gliomas.40

Histopathologic Data Analysis
Two experienced neuropathologists (D.d.P. and P.P.) performed

the histopathologic analysis. Histologic specimens were assessed

for the following: necrosis (presence or absence of frank and/or

geographic necrosis), cell density (3-point grading score), cell

atypia (3-point grading score), mitotic activity (number of mi-

totic figures seen per 10 high-power-field units), infiltrates

(presence or absence of lymphocytes and/or macrophages),

tumor vascular pattern (presence or absence of the following

features: endothelial hypertrophy and/or hyperplasia, glo-

meruloid structures, granulation tissue, large-vessel density,

thrombosis, sclerosed vessels), an overall vascular density

score (3-point grading score), and histologic pattern (fibrillar,

gemistocytic, oligodendrocytes, sarcomatous, giant cells, and

small cells) in conjunction with standard histopathologic sub-

typing and grading according to the World Health Organiza-
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tion classification criteria.1 Vascular and histologic features

were not mutually exclusive; therefore, �1 feature could be

described in a given tumor specimen.

Quantitative measurement of the endothelial surface area, the

vascular surface area, and the vascular profile count per square

millimeter was made by using CD34 immunostaining and dedi-

cated image-analysis software.

Statistical Analysis
Statistical analysis was performed by using SPSS (Version 15.0;

IBM, Armonk, New York) nonparametric statistical tests. While

histologic parameters produce a binary

classification (necrosis, infiltrates, vas-

cular patterns, and histologic patterns),

Mann-Whitney U tests were performed

to test the hypothesis that MR imaging

parameter values did not differ among

groups. While histologic features pro-

duce categoric scores (cell density, cell

atypia, and overall vascular score), mul-

tivariate analysis of variance was used to

test the hypothesis that MR imaging pa-

rameter values did not differ among

groups. Spearman correlation analysis

was performed to assess the relationship

between quantitative histologic mea-

sures (mitotic activity, endothelial sur-

face area, vascular surface area, and

vascular profile count per square milli-

meter) and MR imaging parameters

and to identify correlations among the

individual MR imaging measure-

ments. For Mann-Whitney U and

ANOVA testing, a result was consid-

ered significantly different with P �

.01, given the number of variables as-

sessed. For the Spearman correlation

analysis, significance was �.05.

RESULTS
Twenty-eight untreated newly pre-

sented GBMs were included in the study

(10 women; age range, 38 –76 years;

mean, 60 years). Histologic specimens

were obtained from 12 biopsies and 16

surgical debulkings. The results of statis-

tical analyses for comparisons of histo-

logic and MR imaging measures are

summarized in the On-line Table.

The presence of frank necrosis was

associated with significantly higher val-

ues of Ktrans (P � .01, Fig 1). Signifi-

cantly higher values of ve were seen in

the presence of fibrillary histology (esti-

mated P � .01, Fig 1). A positive corre-

lation was found between ve and mitotic

activity (P � .05, � � 0.470, Fig 2). No

relationship was seen between mitotic

activity and any of the descriptive or semiquantitative histology

measures, suggesting that the relationship between ve and mitotic

activity is independent of the relationship between ve and the

presence of fibrillar histology. No correlation was observed be-

tween ve and cell density.

Cross-correlations between individual MR imaging parame-

ters are summarized in Table 1. Positive correlations were found

between Ktrans and all other MR imaging parameters. Significant

correlations were present between ve and Ktrans (P � .05 and � �

0.450) and between vp and EnF. Mitotic activity did not correlate

FIG 1. A, Boxplot of fibrillar histology and ve (estimated P � .007). Sample histologic specimens
showing tumors without (B) and with (C) the presence of fibrils (small fibers measuring approxi-
mately 1 mm, black arrows, C). H&E stain �40 magnification. D, Boxplot of frank necrosis and
Ktrans (estimated P � .005).

FIG 2. Scatterplot of mitotic activity versus ve (P � .012, � � 0.470), marker shapes depict
separate scores of cell density measures.
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with any quantitative vascular measure, but cross-correlation was

seen across all 3 histologic vascular metrics (Table 2). No other

significant relationships were identified among histologic

measures.

DISCUSSION
While there has been considerable interest in the development of

imaging biomarkers for use in clinical trials, most DCE-MR im-

aging studies have focused on identifying correlates of vascularity

and angiogenesis.41 This study identified an unexpected positive

correlation between ve, a parameter thought to reflect extravascu-

lar extracellular space volume, and mitotic activity. No relation-

ships were identified among the previously described DCE-MR

imaging prognosticators, Ktrans and vp, and mitotic activity or

between vascular patterns and DCE-MR imaging measures.

The parameter ve is often overlooked in DCE-MR imaging

studies. In cerebral tumors, it has the potential to distinguish in-

tra- from extra-axial tumors42,43 and exhibits increased values

with increasing tumor grade.33,34,42,44 It has also demonstrated

sensitivity in identifying changes in response to treatment with

corticosteroids, with decreases in ve presumably reflecting a re-

duction in interstitial edema.45,46 In a study of vestibular schwan-

nomas, meningiomas, and gliomas, no direct measure of the ex-

travascular extracellular space or cell density measure was made,

but ve values in schwannoma were significantly larger than those

in glioma, where cell density is higher.43 In a study comparing ve

with ADC in glioma, no relationship was found between the 2

metrics, suggesting that these parameters may provide indepen-

dent information about the extravascular extracellular space.35

This may reflect the existence of separate extravascular leakage

compartments characterized by fast and slow contrast exchange

rates, possibly reflecting the presence of slow leakage/diffusion

into and out of necrotic tumor spaces.42,47,48 Previous studies

have also reported correlations between microvascular density

and both ve and Ktrans.33,34 We did not find this correlation in our

study, but there was a cross-correlation between the DCE-MR

imaging parameters ve and Ktrans, rais-

ing the possibility that the correlation

reported in the previous studies reflects

the relationship of ve with Ktrans rather

than microvascular density. A previous

rat xenograft study has reported a corre-

lation between ve and cellular density,36

but our current study found no such

relationship.

Histologic measures of cell density

are often a count of the number of cell nuclei per unit area and

without quantification of the amount of tissue the cells occupy;

thus, an increase in histologic cell density may reflect an increase

in the number of cells, but not necessarily a decrease in extravas-

cular extracellular space if the cells are small. There are potential

modeling problems associated with the calculation of ve. Clearly it

can be estimated only in perfused tissue where there is significant

leakage of contrast agent.35 This problem means that summary

statistics presented in this and other studies reflect only perfused

tissue with contrast agent leakage, in contrast to diffusion-

weighted imaging, in which high ADC values are seen in associa-

tion with necrosis. We have specifically excluded nonperfusing

tissue from estimates of summary statistics, which could other-

wise produce artificially low values of ve. In addition, the relatively

low dynamic sampling duration (6 minutes) will affect ve esti-

mates to some degree. First, model fitting errors (assuming that

the model is correct) will result from undersampling, but model-

ing studies suggest that these fitting errors are likely to be very

small.49 Second, short sampling times will lead to relative under-

representation of slow tissue exchange compartments, which

would tend to reduce the impact of necrotic tissue on ve estima-

tions as described in several studies.42,47,48 These potential model

fitting errors and short sampling times imply that tumors with

greater necrosis would have shown higher ve values if sampling

had continued for a longer time and that the measured values of ve

in this study are more likely to reflect the extravascular extracel-

lular space fraction in viable tissue.

The positive correlation between ve and mitotic activity is sur-

prising. Tumors with larger ve values exhibited more mitotic ac-

tivity, the inverse of what one might expect (and the inverse of our

initial hypothesis), whereby more proliferative tumors would be

more densely packed with cells. Neither mitotic activity nor ve

related to the presence of necrosis, though the lack of a relation-

ship between ve and necrosis may, in part, reflect the relatively low

dynamic collection period (see above). These observations sug-

gest that the size of the extravascular extracellular space in per-

fused enhancing tumor tissue is truly related to mitotic rate and

not simply a reflection of elevated measures of ve due to increased

necrosis in rapidly proliferating tumors.

This suggestion is initially counterintuitive. In normally devel-

oping tissues, mitotic activity is higher in areas of low cell packing

due to the inhibition of proliferation in response to cell-to-cell

contact, a process known as contact inhibition of proliferation in

developing normal tissue.50 No similar relationship has been de-

scribed in malignant tissues, and loss of contact inhibition of mi-

tosis is one of the hallmarks of the cancer cell.51 This finding leads

to the hypothesis, stated in the introduction, that rapidly prolif-

Table 1: Cross-correlations of MRI parametersa

Untreated GBM (n = 28)

ve vp EnFIAUC60>0 EnFIAUC60>2.5

Ktrans 0.016,b � � 0.450 0.006,c � � 0.507 0.005,c � � 0.513 �0.001,c � � 0.784
ve 0.105, � � 0.313 0.888, � � 0.028 0.059, � � 0.361
vp 0.02,b � � 0.437 �0.001,c � � 0.620
EnFIAUC60�0 �0.001,c � � 0.825

a Significance levels and Spearman � are shown.
b Significance was P � .05.
c Significance was P � .01.

Table 2: Cross-correlations of quantitative histologic measuresa

Untreated GBM (n = 28)

ESA Ratio VSA Ratio VPC/mm2

Mitotic
activity

0.098, � � 0.325 0.066, � � 0.358 0.737, � � 0.068

ESA ratio �0.001,b � � 0.993 0.04,c � � 0.530
VSA ratio 0.04,c � � 0.532

Note:—VPC indicates vascular profile count per square millimeter; VSA, vascular
surface area; ESA, endothelial surface area.
a Significance levels and Spearman � are shown.
b Significance was P � .01.
c Significance was P � .05.
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erating tumors will continue to proliferate, leading to increased

cell density and a decreased size of the extravascular extracellular

space and consequently of ve. We have no evidence to explain why

the observed relationship should exist. One possible explanation

may be that tumors with high cellular density still have impaired

responses to tumoral growth factors despite loss of contact inhi-

bition of proliferation.52 Another possible explanation is that tu-

mors with short mitotic cycles are characterized by a reduced time

for cellular maturation, resulting in smaller cells and reduced cell

packing. Whatever the underlying biologic mechanism, this find-

ing appears particularly interesting and requires further study.

The ability to obtain an MR imaging– based biomarker of mi-

totic activity and/or tumor cell proliferation is highly desirable.

The findings presented here may be tumor-specific or reflect an

unrecognized phenotype, but the possibility that ve may be a po-

tential marker of mitotic activity merits further evaluation.

The data also demonstrated a positive relationship between

the presence of tumor cell fibrils within the histologic specimens

and higher ve, though the numbers were very small (n � 4). Fibril-

lar cell processes are cell extensions containing cytoplasm, which

are surrounded by cell membranes. These are visible through a

microscope and allow tumor astrocytes to be recognized as

“fibrillar.” A less cell-dense arrangement due to such cell exten-

sions and/or intercellular edema facilitate its recognition via light

microscopy. Thus, the ability to identify fibrillar cell processes

suggests that the tumor cells are more loosely packed or that there

is localized extracellular edema. No relationship was identified

between fibrillar histology and mitotic activity, indicating that the

relationships between ve and these measures are independent.

Most previous work evaluating the relationship between

specific histologic features and DCE-MR imaging has focused

predominantly on CBV derived from DSC techniques with signif-

icant relationships seen among CBV and microvascular den-

sity,26-29 VEGF expression,27,30 cell density,29 endothelial prolif-

eration,31 and mitotic activity.31 No such relationships were

identified between these latter 3 measures and vp in this study. A

study by Lüdemann et al53 compared a variety of MR imaging

techniques with H2[150]-PET for measuring perfusion and found

that while both DSC and T1-weighted DCE-MR imaging tech-

niques correlated with the criterion standard H2[150]-PET mea-

sure, only borderline correlation was seen between the DSC tech-

niques and the T1-weighted technique, whereby DSC-derived

blood volumes were generally lower than those derived from the

T1-weighted DCE-MR imaging technique. This finding may ac-

count for the failure of vp to relate to any of the histologic mea-

sures in this study.

The major limitation of the present work is the lack of stereo-

tactic image–matched histologic specimens; therefore, correla-

tion between the histology and the DCE-MR imaging measure-

ments at a local level cannot be made. GBMs are notoriously

heterogeneous tumors, and histologic analysis of small tumor

specimens may lead to undergrading of a tumor if the sample is

not a true reflection of the tumor as a whole. At the time of the

study, image-matched histologic samples were not obtained and

there was no concurrent postoperative imaging performed, which

could have helped to identify the site of the histologic sample. All

histologic specimens in this study did confirm the diagnosis of

GBM and therefore are considered representative samples. Previ-

ous nonimage-registered studies comparing ve with histopatho-

logic vascular measures have been reported, but these have been

performed with a selection of 3– 4 small ROIs, taking the maximal

value of ve and Ktrans,33,34 which is unlikely to provide a represen-

tation of the tumor as a whole. In our current study, for the

DCE-MR imaging measures Ktrans, ve, and vp, median values from

whole-tumor VOIs were used. Studies using whole-tumor VOIs

have previously identified significant differences in DCE-MR im-

aging parameters among tumor grades17 and have been shown to

convey important potential prognostic information.25 Thus, a

comparison between small histologic samples and DCE-MR im-

aging parameters from whole-tumor VOIs seems reasonable. Fur-

ther work is required to confirm that the correlations identified in

the current study hold true for image-matched stereotactic sam-

ples. In addition, some histologic features such as Ki-67 and

VEGF expression, which have previously shown correlation with

DSC-MR imaging– derived CBV,20,26-30 were not available.

CONCLUSIONS
The DCE-MR imaging– derived measure ve has been identified as

a potential correlate of mitotic activity in GBM. While this is an

interesting result, our understanding of the biologic mechanisms

responsible for this possible relationship is limited. Further work

with the correlation of ve to more precise measures of cell density,

additional markers of cellular and vascular proliferation, and

measures of VEGF expression is warranted.
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42. Lüdemann L, Grieger W, Wurm R, et al. Quantitative measurement
of leakage volume and permeability in gliomas, meningiomas and
brain metastases with dynamic contrast-enhanced MRI. Magn
Reson Imaging 2005;23:833– 41 CrossRef Medline

43. Zhu XP, Li KL, Kamaly-Asl ID, et al. Quantification of endothelial
permeability, leakage space, and blood volume in brain tumors us-
ing combined T1 and T2* contrast-enhanced dynamic MR imaging.
J Magn Reson Imaging 2000;11:575– 85 Medline
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