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EDITORIAL

Neuroimaging Findings in Congenital
Zika Syndrome
X A. Poretti and X T.A.G.M. Huisman

Since the early 2015 outbreak of the Zika virus, an arbovirus

originally identified in Africa and Asia-Pacific and transmit-

ted by Aedes aegypti mosquitoes, the virus has spread rapidly from

Pernambuco State throughout Brazil and the Americas. In Brazil,

more than 30,000 clinical cases have been reported so far.1 While

the total number of infected individuals is unknown, it is expected

to reach more than 1 million in the next year.2 In addition, the

virus has been disseminated outside Brazil, and cases of Zika virus

infection have been reported in 25 countries in the Americas,

Africa, and Asia. The outbreak of Zika virus infection in Brazil was

associated with an increase in congenital microcephaly by a factor

of 20.2 The suspected causal relationship between prenatal Zika

virus infection and microcephaly has now been confirmed.3 This

confirmation was evidenced by several observations, including

the following: 1) Zika virus infection during prenatal develop-

ment at times that were consistent with the defects observed; 2) a

specific, rare phenotype involving microcephaly and associated

brain anomalies in fetuses or infants with presumed or confirmed

congenital Zika virus infection, and 3) data that strongly support

the biologic plausibility, including the identification of Zika virus

in the brain tissue of affected fetuses and infants.3-5 In addition,

Zika virus infection has been associated with approximately 50

cases of Guillain-Barré syndrome,2 suggesting that the disease is

less benign than initially thought, making Zika a “public health

emergency of international concern.” In 2016, more than 700

scientific articles have been published on the Zika virus. Rarely

before have scientists tackled a new research topic with such a

sense of urgency. Finally, the major global impact of Zika virus has

been shown by various discussions about the need to delay or

relocate the 2016 Rio de Janeiro Olympic Games because of public

health concerns over the risk of Zika virus infection for the Olym-

pic community.

For neuroradiologists, a detailed knowledge of the potential

neuroimaging findings in children with congenital Zika syn-

drome is needed to accurately make the diagnosis. Head CT stud-

ies have revealed intracranial calcifications in most patients with

microcephaly.6-8 Calcifications are typically located at the corti-

comedullary junction and involve mostly the frontal and parietal

lobes. In about half of patients, calcifications may be seen in the

basal ganglia and/or thalami, while calcifications within the

periventricular white matter are less common. Calcifications

within the cerebellum, brain stem, and spinal cord have been

reported in only a few patients.6,7 The calcifications are typically

punctuate, but in some patients, they may be linear or bandlike

(particularly at the corticomedullary junction) or coarse (espe-

cially within the basal ganglia and thalami). In addition, head CT

studies showed cortical hypogyration in all patients.6-8 Cortical

hypogyration is typically severe (with only the Sylvian fissure ob-

viously present) and can be better delineated with MR imaging. In

children who underwent MR imaging, the main cortical abnor-

mality included a simplified gyral pattern (normal cortical thick-

ness) associated with areas of polymicrogyria or pachygyria (thick

cortex) predominantly located in the frontal lobes.6 In a few chil-

dren, hemimegalencephaly and periventricular heterotopia have

been reported.6 Ventriculomegaly is an additional consistent

finding seen on head CT and brain MR imaging studies.6-8 Ven-

triculomegaly is usually moderate or severe, may involve the

whole ventricular system or only the lateral ventricles with pre-

dominant enlargement of the trigones and posterior horns, and is

most likely secondary to the thin cortical mantle and decreased

white matter volume. An enlargement of the subarachnoid spaces

is seen in most patients.6,8 On head CT, diffusely abnormal hy-

podensity of the white matter is seen in most infants.7 MR imag-

ing studies revealed that the white matter hypodensity seen on CT

represents, most likely, areas of dysmyelination or delayed myeli-

nation with secondary thinning of the corpus callosum.6,8 Poste-

rior fossa involvement may include global or unilateral cerebellar

hypoplasia, brain stem hypoplasia, and mega-cisterna magna in

some patients.6-8 Finally, enlargement of the choroid plexus and

intraventricular septations have also been reported in select pa-

tients.8 Most of these findings (particularly intracranial calcifica-

tions and ventriculomegaly) may be detected prenatally by fetal

sonography from 19 weeks of gestation.4,9,10 Fetal MR imaging

may provide additional information about cortical abnormalities

and posterior fossa involvement.10

Abnormal cortical development and global cerebellar hyp-

oplasia suggest an underlying disruptive pathomechanism caused

by congenital Zika virus infection. Recently, experimental studies

have shed more light on the neuropathogenesis of the congenital

Zika virus syndrome and support a disruptive pathogenesis. In

experimental models, Zika virus was shown to target human brain

cells, reducing their viability and growth.11-13 These results sug-

gest that Zika virus abrogates neurogenesis during human brain

development. In addition, Zika virus infection causes a down-

regulation of genes involved in cell cycle pathways, dysregulation

of cell proliferation, and upregulation of genes involved in apo-

ptotic pathways, resulting in cell death.12

In congenital Zika syndrome, the skull is also affected and has

a pointed occiput with overriding bones mainly in the frontal and

occipital regions.8,14 The skull deformity seems to be secondary to

the extensive brain abnormalities, but a primary involvement of

the skull bones is not excluded. Ongoing studies should solve this

hypothesis.

Many questions about Zika virus infection and congenital

Zika syndrome need to be answered. For some of these open ques-

tions (eg, the most susceptible period of the fetus to the Zika virus

infection, the risk and incidence of fetal microcephaly when the

mother is infected with Zika virus, and the risk of developing

motor and intellectual disabilities from brain abnormalities due

to Zika virus infection), neuroimaging may be of great help in

providing the answers and in better understanding the congenital

Zika syndrome.http://dx.doi.org/10.3174/ajnr.A4924
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