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ORIGINAL RESEARCH
BRAIN

Identification of Minimal Hepatic Encephalopathy
in Patients with Cirrhosis Based on White Matter Imaging and

Bayesian Data Mining
H.-J. Chen, R. Chen, M. Yang, G.-J. Teng, and E.H. Herskovits

ABSTRACT

BACKGROUND AND PURPOSE: White matter abnormalities have been demonstrated to play an important role in minimal hepatic
encephalopathy. In this study, we aimed to evaluate whether WM diffusion tensor imaging can be used to identify minimal hepatic
encephalopathy among patients with cirrhosis.

MATERIALS AND METHODS: Our study included 65 patients with cirrhosis with covert hepatic encephalopathy (29 with minimal hepatic
encephalopathy and 36 without hepatic encephalopathy). Participants underwent DTI, from which we generated mean diffusivity and
fractional anisotropy maps. We used a Bayesian machine-learning technique, called Graphical-Model-based Multivariate Analysis, to
determine WM regions that characterize group differences. To further test the clinical significance of these potential biomarkers, we
performed Cox regression analysis to assess the potential of these WM regions in predicting survival.

RESULTS: In mean diffusivity or fractional anisotropy maps, 2 spatially distributed WM regions (predominantly located in the bilateral
frontal lobes, corpus callosum, and parietal lobes) were consistently identified as differentiating minimal hepatic encephalopathy from no
hepatic encephalopathy and yielded 75.4%– 81.5% and 83.1%–92.3% classification accuracy, respectively. We were able to follow 55 of 65
patients (median � 18 months), and 15 of these patients eventually died of liver-related causes. Survival analysis indicated that mean
diffusivity and fractional anisotropy values in WM regions were predictive of survival, in addition to the Child-Pugh score.

CONCLUSIONS: Our findings indicate that WM DTI can provide useful biomarkers differentiating minimal hepatic encephalopathy from
no hepatic encephalopathy, which would be helpful for minimal hepatic encephalopathy detection and subsequent treatment.

ABBREVIATIONS: FA � fractional anisotropy; GAMMA � Graphical-Model-based Multivariate Analysis; HE � hepatic encephalopathy; HR � hazard ratio; MD �
mean diffusivity; MHE � minimal hepatic encephalopathy; NHE � no hepatic encephalopathy

Hepatic encephalopathy (HE) is a serious and frequent com-

plication of cirrhosis,1 which can increase the risk of death.2

As the mildest form of HE, minimal hepatic encephalopathy

(MHE) is defined by impaired performance on psychometric or neu-

rophysiologic testing, despite normal mental status.1,3 MHE is asso-

ciated with impaired quality of life4 and predicts conversion to overt

HE,5 which can result in subsequent mortality.2 Meanwhile, MHE

represents a treatable and reversible stage of HE6; it is, therefore,

important to identify MHE to optimize treatment and prognosis.

Abnormalities in brain white matter, such as low-grade

edema7-11 and structural impairments,12-14 have been well-revealed

in MHE by MR imaging. These WM abnormalities are believed to

be responsible for poor neurologic performances12,15,16 and brain

dysfunctions17,18 in MHE and to be associated with HE develop-

ment,9,11,16 suggesting that WM imaging may be useful in character-

izing potential MHE biomarkers. Of WM imaging techniques, diffu-

sion tensor imaging, measuring the appropriate metrics such as

mean diffusivity (MD), reflecting water movement across cell mem-

branes, and fractional anisotropy (FA), reflecting microstructural in-
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tegrity of WM, is demonstrated to reveal the neuropathologic pro-

cesses of MHE through group-level comparison.8,9,12,14,15,17 To date,

however, there is no study using DTI-derived feature maps to

discriminate patients with and without MHE in cirrhosis at the

individual level; this discrimination remains an important ques-

tion for clinicians.6,19 The only related study is the report of Sug-

imoto et al,16 which used a DWI-based metric (apparent diffusion

coefficient) instead of DTI to classify patients with or without

MHE, but in which patients in the intermediate state were ex-

cluded; this method obviously results in inadequate assessment.

Few studies to date have been conducted to detect MHE by using

FA as a biomarker.

In this study, our goal was to investigate whether DTI fea-

ture maps can distinguish patients with cirrhosis with MHE

from those without (NHE) by using a Bayesian voxel-based

machine-learning technique called Graphical-Model-based Mor-

phometric Analysis (GAMMA; http://www.nitrc.org/projects/

gamma_suite).20-22 GAMMA is a nonparametric, multivariate,

Bayesian approach to modeling structure-function associa-

tions, which allows dimension reduction and predictive mod-

eling in a unified framework and has been validated both on

structural and functional MR imaging data21,23 and has been

used in several studies related to neurologic diseases.22,24 To

further validate identified biomarkers, we assessed their abili-

ties to predict survival among patients with cirrhosis with co-

vert hepatic encephalopathy, given the relationship between

MHE and mortality: The presence of MHE has been observed

to have a prognostic impact on mortality among patients with

liver cirrhosis.25,26

MATERIALS AND METHODS
Subjects
This study was approved by the Research Ethics Committee of

Affiliated Zhongda Hospital, Southeast University, China; 65 pa-

tients with clinically proved cirrhosis with covert HE (29 with

MHE and 36 with NHE) were included after written informed

consent was obtained (Table 1).

For psychometric assessment, a battery of neuropsychiatric

tests, including the Number Connection Test A, Digit Symbol

Test, and Block Design Test, were administered to all partici-

pants. These 3 neuropsychiatric tests are widely used in MHE

detection,1,3,16 development of new diagnostic methods for

MHE,19,27 and survival analysis of patients with cirrhosis.16,28 Pa-

tients were identified as having MHE if

they had abnormal scores in any of these 3

neurocognitive tests.19,27

Exclusion criteria were the presence

of overt HE at baseline, known presence

of neuropsychiatric diseases, significant

nonhepatic diseases (such as decompen-

sated heart and respiratory or renal fail-

ure), and uncontrolled endocrine or

metabolic diseases (such as diabetes

mellitus and thyroid dysfunction). Sub-

jects on psychoactive medications or

with alcohol abuse 6 months before the

study were also excluded.

MR Imaging Acquisition
MR imaging was performed by using a 1.5T scanner (Vantage

Atlas; Toshiba Medical Systems, Tokyo, Japan). DTI sequences

were acquired by using a 6-direction, single-shot, spin-echo EPI

sequence, with TR � 9450 ms, TE � 100 ms, FOV � 260 � 260

mm, matrix � 128 � 128, section thickness/gap � 3.0/0 mm,

b�1000 s/mm2, and NEX � 3. The 3D high-resolution (1.0 �

1.0 � 1.5 mm) T1-weighted images were also acquired for the

registration of DTI.

DTI Processing
We used the fMRI of the Brain Software Library (FSL; http://

fsl.fmrib.ox.ac.uk/fsl) to process the DTI data. We corrected the

DTI data for head movement and eddy current distortions with

the non-diffusion-weighted imaging (the B0 image) as a refer-

ence. We fitted diffusion tensor models independently for each

voxel and computed MD and FA maps. For the normalization

of DTI, we first segmented the high-resolution T1-weighted

images into gray matter, WM, and CSF by using the FMRIB

Integrated Registration and Segmentation Tool (FIRST; http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) and spatially normalized

these images to the Montreal Neurological Institute coordinate

space. By concatenating the transformation from the B0 image

to the T1 image with the transformation from the T1 image to

the Montreal Neurological Institute space (by using a nonlin-

ear transformation), we obtained normalized FA and MD

maps.

GAMMA
GAMMA is a machine-learning method that detects biomarkers

from high-dimensional neuroimaging data. GAMMA has 2 im-

portant features: First, it has an embedded dimension-reduction

mechanism. For high-dimensional neuroimaging data, the large

number of candidate models turns the model inference into an

underdetermined computational problem. Dimension reduc-

tion can ameliorate this problem. Second, GAMMA can detect

multivariate interactions among brain regions characterizing a

disorder by considering conditional independence among vari-

ables. To date, few neuroimaging data analysis methods have

these 2 features.

The goal of GAMMA is to detect a set of brain regions that are

jointly predictive of a group-membership variable g. Toward this

end, GAMMA iteratively performs Markov Blanket identification

Table 1: Demographic and clinical characteristics of subjects

Characteristic
Patients with NHE

(n = 36)
Patients with MHE

(n = 29) P Value
Age (yr) 50.1 � 8.9 52.8 � 8.4 .227
Sex (male/female) 34/2 26/3 .471 (�2 test)
Education (yr) 8.5 � 2.9 7.6 � 2.3 .158
Etiology of cirrhosis (HBV/alcoholism/

HBV�alcoholism/other)
29/4/1/2 22/0/4/3 –

Child-Pugh stage (A/B/C) 19/12/5 8/10/11 –
Child-Pugh score 7.0 � 2.2 8.4 � 2.2 .016
Previous history of overt HE (yes/no) 7/29 10/19 .170
Number Connection Test A (sec) 44.5 � 10.8 81.4 � 23.8 �.001
Digit Symbol Test (raw score) 40.2 � 8.7 23.6 � 7.7 �.001
Block Design Test (raw score) 29.3 � 8.8 17.7 � 6.5 �.001

Note:—HBV indicates hepatitis B virus.
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and voxel-space partitioning. In Markov Blanket identification,

GAMMA uses Bayesian methods to search for a set of voxels

(called representative voxels) that are jointly predictive of g. The

interactions among representative voxels and g are described by a

Bayesian network model. In voxel-space partitioning, for each

representative voxel, GAMMA identifies voxels that are probabi-

listically equivalent to this representative voxel—that is, GAMMA

searches for additional voxels that have similar associations with

g. In this manner, each representative voxel is associated with a

region of interest consisting of a representative voxel and its

equivalent voxels. The output of GAMMA is a label field and a

Bayesian network model. The label field includes a set of brain

regions that are jointly most predictive of g, and each brain region

in the label field is a ROI. The interactions among these brain

regions and g are described by the Bayesian network model. De-

tails of the GAMMA algorithm are presented in Chen and

Herskovits.20

We calculated voxelwise mean and SD values for FA maps and

compared each subject’s FA map with the mean FA map. De-

creased FA in WM has been consistently reported in patients with

MHE12,14,15; therefore, we used a voxelwise threshold that is at

multiple SDs below the mean value to threshold the FA map,

resulting in a binary FA map, in which 1 represents an abnormal

FA value and zero is normal. To reduce noise, we included only

WM voxels with decreased FA value (determined by uncorrected

P � .05 in a 2-sample t test).29 To ensure model stability, we

compared 5 different thresholds: 0 SD, 0.25 SD, 0.50 SD, 0.75 SD,

and 1.0 SD below the mean.

We performed similar preprocessing steps to generate binary

MD maps. Because previous reports have consistently reported

that patients with MHE have increased MD in WM,8,12,14-17 we

set the voxelwise thresholds of the MD value at 0 SD, 0.25 SD, 0.50

SD, 0.75 SD, and 1.0 SD above the mean.

After identifying FA and MD regions of interest that charac-

terize group differences, we used the regional state inference algo-

rithm20 to infer the state (normal/abnormal) for a particular ROI.

Then we built Naive-Bayes classifiers (10-fold cross-valida-

tion) to discriminate patients with MHE and NHE on the basis

of these regional state variables. The structure of the Naive-

Bayes classifier was [group membership 3 (biomarker 1, …,

biomarker m)].

Validation of Detected Biomarkers
We performed 2 experiments to validate the biomarkers detected

by GAMMA. For each subject, we extracted the average FA value

for each ROI generated by GAMMA; let FA(ROIk)/MD(ROIk)

denote the average FA/MD value for the kth ROI.

First, we used Pearson correlation analysis to examine the

relationship between MD(ROIk) or FA(ROIk) and the neuro-

logic test score and the Child-Pugh score. Second, we per-

formed survival analysis by using the detected biomarkers. We

defined the date of the first DTI examination as day 1, and each

patient was followed up every 6 months. Fifty-five of 65 pa-

tients with cirrhosis completed follow-up studies until death

or the end of the observation period (November 2012). We

performed multivariate Cox regression (forward LR method)

analysis to assess the associations of MD(ROIk) or FA(ROIk)

with survival.

RESULTS
Neurologic Assessments and Altered DTI Metrics
Patients with MHE showed significantly impaired performance in

all neurocognitive tests, compared with those with NHE (Table

1). Relative to patients with NHE, those with MHE showed in-

creased mean MD values throughout the WM globally [NHE:

(0.805 � 0.020) �10�3 mm2/s; MHE: (0.821 � 0.035) �10�3

mm2/s; P � .025]. Patients with MHE also had reduced mean FA

values throughout the WM (NHE: 0.344 � 0.014; MHE: 0.331 �

0.016; P � .001). The brain areas with increased MD values in

MHE were the bilateral frontal lobes and the corpus callosum, and

the areas with decreased FA values included the bilateral frontal,

parietal, occipital, and temporal lobes; internal capsule; and cor-

pus callosum (see the Appendix and On-line Figure). Moreover,

in the MHE group, there was no area showing decreased MD or

increased FA.

Additionally, we performed a post hoc power analysis based

on FA. The observed effect size was 0.87, which was considered

large by using Cohen criteria. Power analysis with � � .05 dem-

onstrated that this study had power � 0.96.

Results of GAMMA Analysis
Across different abnormality thresholds for the MD and FA maps,

GAMMA consistently identified 2 spatially distributed WM re-

gions that were jointly significantly predictive of the group-mem-

bership variable (Figs 1 and 2). Two ROIs identified in MD

maps, denoted by ROI1
MD and ROI2

MD, were predominant in

the bilateral frontal lobes, precuneus, and the corpus callosum

(Fig 1). Similarly, the 2 ROIs identified in FA maps, denoted by

ROI1
FA and ROI2

FA, included bilateral frontal lobes, the cor-

pus callosum, and the left paracentral lobule (Fig 2). Of note,

the ROIs that GAMMA identified from MD and FA maps

largely overlapped.

Results of Classification Analysis
Table 2 shows classification performance based on these ROIs.

Using MD maps, GAMMA achieved good classification accuracy

(mean, 79.1%; range, 75.4%– 81.5%) across 5 distinct thresholds.

The optimal classification performance was accuracy � 80.0%,

sensitivity � 75.9%, and specificity � 83.3%, with the threshold

of 0.25 SD above the mean MD value. Using FA maps, GAMMA

yielded higher classification accuracy (mean, 87.1%; range,

83.1%–92.3%) across the different thresholds. The optimal

classification result was accuracy � 92.3%, sensitivity � 100%,

and specificity � 86.1%, which was obtained at the threshold

of 0.75 SD below the mean FA value. The thresholds resulting

in best classification result (eg, a threshold of 0.25 SD above the

mean MD value or a threshold of 0.75 SD below mean FA

value) were chosen and included in the following validation

analyses.

Results of Validation Analysis
Table 3 shows that MD values of WM ROIs [MD(ROI1) and

MD(ROI2)] were significantly positively correlated with the
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result of the Number Connection Test A and negatively corre-

lated with the results of the Digit Symbol Test and Block De-

sign Test. In contrast, FA values of WM ROIs [FA(ROI1) and

FA(ROI2)] were significantly negatively correlated with the

Number Connection Test A and positively correlated with the

Digit Symbol Test and the Block Design Test scores. Longer

time to complete Number Connection Test A and lower scores

in the Digit Symbol Test and Block Design Test indicated

poorer performance. Patients’ Child-Pugh scores were signif-

icantly correlated with MD(ROI1), MD(ROI2), FA(ROI1), and

FA(ROI2).

For survival analysis, the median follow-up period was 18.0

months. By the end of the observation, 15 patients (11 with

MHE and 4 with NHE) had died from liver-related complica-

tions. Given the consensus that the Child-Pugh score is a

variable with prognostic value for survival among patients with

cirrhosis,2,25,26,28 we assessed the predictive values of MD and

FA alterations by multivariate Cox regression, taking into

account the Child-Pugh score as a covariate. Cox regression

showed that MD(ROI1) (hazard ratio [HR] � 4.253; 95% CI, 1.218–

14.848; P � .023) was a predictor of survival, independent of the

Child-Pugh score. Similarly, MD(ROI2) (HR � 3.948; 95% CI,

1.655–9.420; P � .002), FA(ROI1) (HR � 0.823; 95% CI, 0.696–

0.973; P � .022), and FA(ROI2) (HR � 0.805; 95% CI, 0.671–0.965;

P � .019) showed prognostic value on

survival as well, in addition to the Child-

Pugh assessment.

DISCUSSION
In this study, by using machine learn-

ing, we found that MD values in the bi-

lateral frontal lobes, the precuneus, and

the corpus callosum differentiate sub-

jects with MHE and NHE; similarly, FA

values in the bilateral frontal lobes, the

corpus callosum, and the left paracen-

tral lobule distinguish subjects with

MHE from those with NHE. Mean-

while, MD and FA values of WM ROIs

had prognostic value for survival, inde-

pendent of the Child-Pugh score. These

findings suggest the utility of measuring

WM water molecular diffusivity for

MHE detection.

WM edema (reflected by increased

MD)7-11 and impaired cerebral struc-

tures12-14 have been demonstrated to

play an important role in the MHE

mechanisms. WM edema, which could

be extracellular and/or cytotoxic in ori-

gin,8-10 is considered closely associated

with a metabolic disorder of ammonia

in the brain tissue of patients with

MHE.7,8,10,30 Although the neuro-

pathologic mechanism of decreased FA

is not well-understood in the setting of

cirrhosis, one possible explanation is

demyelination. Osmotic demyelination (due to inappropriate

correction of hyponatremia31) has been noted in cirrhosis.32

Moreover, central nervous system inflammation has been shown

to play an important role in HE,33 which may contribute to in-

flammatory demyelination as observed in other neurologic dis-

eases such as multiple sclerosis.34 In addition, it has been found

that factors released by astrocytes contribute to brain myelina-

tion,35 which would be impaired due to astrocytic dysfunction

resulting from Alzheimer type II changes.7,8,10 Thus, reduction of

WM FA may indicate impaired microstructural integrity in MHE.

Indeed, increased MD and decreased FA are also associated

with the disruption of brain intrinsic networks,17,18 which can

induce neurologic dysfunction in patients with MHE. In our

study, the correlations between altered MD and FA values and

psychometric results further suggest that WM abnormalities, es-

pecially in the corpus callosum and frontal and parietal lobes, are

responsible for neurologic deficits such as psychomotor speed

(reflected by the Number Connection Test A), attention and vi-

sual memory (reflected by the Digit Symbol Test), and visuospa-

tial motor function (reflected by the Block Design Test).

We identified 2 spatially distributed WM ROIs, predomi-

nantly located in the bilateral frontal lobes, the corpus callosum,

and bilateral parietal lobe, in MD maps as predictive of MHE. The

ROIs identified from FA maps largely overlap those obtained

FIG 1. Two white matter ROIs generated by GAMMA, which characterize group differences on
the MD map on the basis of voxelwise thresholds of the following: 0 SD (A), 0.25 SD (B), 0.50 SD (C),
0.75 SD (D), and 1.0 SD (E) above the mean voxelwise MD value. Green and red indicate the 2 ROIs
generated by GAMMA.
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from MD maps; this overlap indicates that these WM regions are

predominantly affected by MHE pathology. Increased ammonia

levels have been found to be associated with the increased ADC in

the frontal and parietal WM.16 In addition, positron-emission

tomography studies have indicated that

an altered glial cell state, an important

cause of MHE, occurs in the frontal WM

and in the corpus callosum.36 The fron-

tal and parietal WM and corpus callo-

sum (particularly the anterior part) are

the regions most commonly reported to

demonstrate increased water content11

or diffusivity9,10,12,15,16 and decreased

FA.15 When patients with cirrhosis in

the intermediate state are excluded, Sug-

imoto et al16 reported 70%–90% sensi-

tivity and 85%–90% specificity in classi-

fication of MHE and NHE, based on a

frontal or parietal WM ADC metric.

Their results indicate, to some extent,

the usefulness of measuring WM diffu-

sion features in MHE detection and are

in line with our findings.

Increased regional MD has been

found to be predictive of the develop-

ment of overt HE,16 which has an omi-

nous prognostic value on survival.2

Meanwhile, MHE is associated with in-

creased risk of an episode of overt HE.5

It is believed that MHE (measured by

neuropsychological tests) has prognos-

tic value on survival in patients with cir-

rhosis with covert HE.25 These progres-

sive patterns of disease may explain why

we found increased MD to be predictive

of survival for patients with cirrhosis

with covert HE. Brain edema has been

reported to be fatal, especially in high-

grade HE, due to increased intracranial

pressure.37,38 Moreover, our findings

regarding the predictive values of MD

and FA on survival agree with the con-

sensus that brain edema9-11 and structural impairment12,13 prog-

ress with advanced disease.

One strength of this study is the application of an advanced

machine-learning method, GAMMA, to the detection of MHE-

related biomarkers.20-22 GAMMA is a nonparametric and multi-

variate Bayesian approach to model complex nonlinear multivar-

iate associations among image features and the clinical variables.

GAMMA automatically generates ROIs that can be used to differ-

entiate MHE from NHE; this feature distinguishes our study from

previous DWI studies, which relied on prespecified ROIs.8-10,16

The consistency of classification across distinct thresholds sug-

gests the validity of these results. Moreover, the significance of

MD ROIs and FA ROIs in predicting survival provides further

evidence regarding the validity of biomarkers detected by

GAMMA.

One limitation of our study is that we confined our analysis to

WM regions, where brain edema predominantly occurs in

MHE11,15; however, several studies have indicated that other ce-

rebral regions, such as subcortical nuclei,9,10 may also manifest

FIG 2. The 2 white matter ROIs generated by GAMMA, which characterize group differences in
the FA on the basis of voxelwise thresholds of the following: 0 SD (A), 0.25 SD (B), 0.50 SD (C), 0.75
SD (D), and 1.0 SD (E) below the mean voxelwise FA value. Green and red indicate the 2 ROIs.

Table 2: Classification accuracy between patients with MHE and
NHE using a single Bayesian network

Voxelwise Threshold and
Classification Network Accuracy Sensitivity Specificity

MD alone
0 SD above mean value 78.5% 75.9% 80.6%
0.25 SD above mean value 80.0% 75.9% 83.3%
0.50 SD above mean value 75.4% 58.6% 88.9%
0.75 SD above mean value 81.5% 65.5% 94.4%
1.0 SD above mean value 80.0% 62.1% 94.4%

FA alone
0 SD below mean value 84.6% 75.9% 91.7%
0.25 SD below mean value 83.1% 79.3% 86.1%
0.50 SD below mean value 89.2% 86.2% 91.7%
0.75 SD below mean value 92.3% 100% 86.1%
1.0 SD below mean value 86.2% 72.4% 97.2%
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low-grade edema. The second limitation is that we used a subop-

timal DTI sequence with 6 diffusion-encoding gradient direc-

tions, due to the finite capability of our MR imaging scanner. The

third limitation is that we only used DTI to generate biomarkers

for MHE. Other MR imaging models (eg, resting-state fMRI39)

have been reported to be useful in distinguishing MHE from NHE

as well. DTI may be more readily applicable in the clinical setting

because it is more convenient to obtain DTI relative to resting-

state fMRI. However, the combination of these MR imaging tech-

niques may yield more accurate classification and is an area for

future extension of this research.

CONCLUSIONS
Combining advanced machine-learning techniques and DTI can

generate biomarkers that identify patients with MHE among pa-

tients with cirrhosis with covert hepatic encephalopathy; both

increased MD and decreased FA are predictive of survival. Our

findings may be helpful in detecting MHE and improving subse-

quent treatment.

APPENDIX
Between-Group Comparison
The 2-sample t tests were performed to determine the regions

with an MD/FA difference between 2 groups in a voxelwise way.

The statistical threshold was set at P � .05 (the combination of

P � .005 for single voxel and a minimum cluster size of 120

voxels), which was determined by Monte Carlo simulations by

using the AlphaSim program (http://afni.nimh.nih.gov/afni).

Disclosures: Edward H. Herskovits—UNRELATED: Expert Testimony: Medicolegal;
Grants/Grants Pending: Microsoft,* State of Maryland.* *Money paid to the
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