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ORIGINAL RESEARCH
EXTRACRANIAL VASCULAR

Optimal Prediction of Carotid Intraplaque Hemorrhage Using
Clinical and Lumen Imaging Markers

X M.S. McLaughlin, P.J. Hinckley, S.M. Treiman, S.-E. Kim, G.J. Stoddard, D.L. Parker, G.S. Treiman, and J.S. McNally

ABSTRACT

BACKGROUND AND PURPOSE: MR imaging detects intraplaque hemorrhage with high accuracy by using the magnetization-prepared rapid
acquisition of gradient echo sequence. Still, MR imaging is not readily available for all patients, and many undergo CTA instead. Our goal was to
determine essential clinical and lumen imaging predictors of intraplaque hemorrhage, as indicators of its presence and clues to its pathogenesis.

MATERIALS AND METHODS: In this retrospective cross-sectional study, patients undergoing stroke work-up with MR imaging/MRA
underwent carotid intraplaque hemorrhage imaging. We analyzed 726 carotid plaques, excluding vessels with non-carotid stroke sources
(n � 420), occlusions (n � 7), or near-occlusions (n � 3). Potential carotid imaging predictors of intraplaque hemorrhage included
percentage diameter and millimeter stenosis, plaque thickness, ulceration, and intraluminal thrombus. Clinical predictors were recorded,
and a multivariable logistic regression model was fitted. Backward elimination was used to determine essential intraplaque hemorrhage
predictors with a thresholded 2-sided P � .10. Receiver operating characteristic analysis was also performed.

RESULTS: Predictors of carotid intraplaque hemorrhage included plaque thickness (OR � 2.20, P � .001), millimeter stenosis (OR � 0.46,
P � .001), ulceration (OR � 4.25, P � .020), age (OR � 1.11, P � .001), and male sex (OR � 3.23, P � .077). The final model discriminatory value
was excellent (area under the curve � 0.932). This was significantly higher than models using only plaque thickness (area under the curve �

0.881), millimeter stenosis (area under the curve � 0.830), or ulceration (area under the curve� 0.715, P � .001).

CONCLUSIONS: Optimal discrimination of carotid intraplaque hemorrhage requires information on plaque thickness, millimeter stenosis,
ulceration, age, and male sex. These factors predict intraplaque hemorrhage with high discriminatory power and may provide clues to the
pathogenesis of intraplaque hemorrhage. This model could be used to predict the presence of intraplaque hemorrhage when MR imaging is
contraindicated.

ABBREVIATIONS: IPH � intraplaque hemorrhage; AUC � area under the curve

For �20 years, stenosis has been the primary predictor of stroke

risk from carotid disease based on landmark studies including

the North American Symptomatic Carotid Endarterectomy Trial,

Asymptomatic Carotid Atherosclerosis Study, and European Ca-

rotid Surgery Trial.1-3 During the past 10 years, advances have

been made in MR imaging detection of plaque components, most

notably with carotid intraplaque hemorrhage (IPH). Moody et al4

first reported that high MR imaging signal within the carotid wall

was shown to detect complex atheromas. Since that time, carotid

IPH has been detectable with high accuracy by using heavily T1-

weighted sequences such as magnetization-prepared rapid acqui-

sition of gradient echo.5 MR imaging– detected carotid IPH is an

essential indicator of stroke risk and is independent of stenosis.6-9

However, MR imaging in general and the MPRAGE sequence

specifically may not be available in all clinical settings.

While most reports have correlated IPH with other markers of

plaque vulnerability, none have generated a predictive model of

IPH based on all available clinical and imaging markers. Many re-

searchers have demonstrated that the likelihood of IPH increases

with increasing carotid stenosis.10 Others have shown that IPH pos-

itively correlates with not only stenosis but also plaque volume or
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thickness.11 Recently, CTA-detected ulceration was found to act as a

surrogate marker for IPH.12 These data suggest that IPH can be pre-

dicted, with some degree of accuracy, on the basis of lumen imaging

findings. In addition, IPH has been found at a higher prevalence in

males and in higher age groups.13 With these findings in mind, the

goal of this study was to determine a predictive model of IPH by using

available imaging and clinical markers.

We began with the hypothesis that lumen imaging and clinical

factors could be used to predict the presence of IPH. Doing so may

provide clues to the pathogenesis of IPH. Another potential benefit

would be to patients in whom MR imaging is contraindicated. To

detect IPH, we used an MPRAGE sequence included as part of a

clinical protocol beginning in November 2009. Data were gathered

prospectively and analyzed in a retrospective cross-sectional study.

We included all patients imaged with carotid MRA by using the

MPRAGE sequence for 4.5 years. A multivariable logistic regression

model was fitted to determine essential imaging and clinical markers

of IPH. This cohort of patients was used previously to determine

predictors of carotid-source stroke, which were found to include in-

traluminal thrombus, intraplaque hemorrhage, plaque thickness,

and current smoking.8

MATERIALS AND METHODS
Clinical Study Design
Institutional review board approval was obtained for this cross-

sectional study on patients undergoing stroke evaluation with

brain MR imaging/carotid MRA from November 2009 to January

2014. The carotid MPRAGE sequence was added to the clinical

MRA imaging protocol in November 2009. Patients presenting

for stroke work-up were scanned within 1 week of symptom on-

set. From November 2009 to January 2014, 578 patients under-

went brain MR imaging/carotid MRA for acute stroke evaluation

with the additional MPRAGE sequence. This resulted in 1156 ca-

rotid artery–ipsilateral brain image pairs.

Exclusions were determined after reviewing electronic medi-

cal records for non-carotid plaque stroke sources: those outside 2

cm above and below the carotid bifurcation. We excluded 430

carotid-brain pairs. These included craniocervical dissections

(n � 118), atrial fibrillation (n � 94), intracardiac/extracardiac

shunt (n � 86), cardiac thrombus (n � 26), recent aortic or mitral

valve replacement (n � 16), vasculitis (n � 14), global hypoxic/isch-

emic injury (n � 10), recent cardiac or neurovascular catheterization

(n � 10), recent cardiovascular surgery (n � 8), dural venous sinus

thrombosis (n � 8), fibromuscular dysplasia or lupus vasculopathy

(n � 8), proximal common carotid stenosis �50% (n � 6), rheu-

matic heart disease (n � 4), brain neoplasm (n � 4), endocarditis

(n � 2), idiopathic hypertrophic subaortic stenosis (n � 2), aortic

graft complication (n � 2), and distal vessel atherosclerosis (n � 2).

We also excluded occluded carotid arteries (n � 7), and extremely

high-grade lesions (n � 3). We used 726 carotid plaques in the final

analysis. Although a few scans showed mild motion artifacts primar-

ily from swallowing, these artifacts were not sufficient to exclude any

carotid arteries from interpretation.

MR Imaging/MRA Clinical Protocol
Images were obtained on 3T and 1.5T MR imaging scanners

(Verio and Avanto, Siemens, Erlangen, Germany) with standard

head/neck coils. The standard clinical MR imaging/MRA proto-

col for these patients included brain MR imaging (axial DWI,

axial T2-weighted, axial FLAIR, and sagittal T1-weighted images),

brain MRA (3D axial TOF), and neck MRA (2D axial TOF, coro-

nal precontrast T1-weighted, and coronal postcontrast arterial

and venous phase images). Coronal postcontrast MRA neck im-

ages were obtained from the aortic arch through the circle of

Willis. Total scan time was approximately 45 minutes, of which

the MPRAGE sequence required approximately 5 minutes. In

cases in which renal insufficiency precluded intravenous contrast

(glomerular filtration rate, � 30 mL/min/1.73 m2), postcontrast

MRA images were replaced with 3D noncontrast TOF with 1-mm

section thickness combined with duplex sonography.

Carotid MPRAGE Sequence
MPRAGE parameters were first optimized at 3T and were as fol-

lows: 3D, TR/TE/TI � 6.39/2.37/370 ms, flip angle � 15°, FOV �

130 � 130 � 48 mm3, matrix � 256 � 256 � 48, voxel � 0.5 �

0.5 � 1.0 mm3, fat saturation, time � 5 minutes. The TI was

initially optimized for 3T and transferred to 1.5T. An initial TI of

approximately 500 ms was chosen on the basis of prior computer

simulations at 3T and was adjusted down to a TI of 370 ms to

maximize contrast between hemorrhage and inflowing blood in

human volunteers as described previously.14,15 Images were ob-

tained from 20 mm below to 20 mm above the carotid bifurcation

at 1.0-mm section thickness. To produce 3D images, we used a

secondary phase-encoding gradient in the section-select direc-

tion, and measurements for all section-selection phase-encodings

were performed with rapid acquisition in each segment.

Carotid Lumen Imaging Markers
All carotid imaging markers were determined by consensus re-

view of 2 reviewers (M.S.M. and J.S.M.), both blinded to findings

on brain MR imaging and clinical covariates. In addition, IPH was

determined independently of other carotid imaging markers of

stroke risk. Lumen markers included percentage diameter steno-

sis, millimeter stenosis, maximum plaque thickness, ulceration,

and intraluminal thrombus.

Percentage diameter stenosis was determined by using the

NASCET criteria on contrast MRA. Briefly, the diameter (b) at the

level of maximal stenosis and the diameter (a) of the internal

carotid artery distal to the stenosis were used to calculate the per-

centage diameter stenosis by using the formula [(a � b)/a] �

100%. Carotid stenosis was measured at the narrowest segment of

the carotid plaque (b) on the axial images, perpendicular to the

long axis of the vessel on multiplanar reformats by using a sub-

millimeter measurement tool (Fig 1A). The distal ICA diameter

(a) was measured beyond the bulb where the walls are parallel and

no longer tapering per NASCET criteria.16-18 We performed the

multivariable regression analysis by using both the NASCET mea-

surement of percentage diameter stenosis [(a � b)/a] � 100% and a

millimeter stenosis (b) measurement adapted from the millimeter

stenosis method first described on CTA.19 To identify near-occlu-

sions, we excluded an ICA from the percentage stenosis calculation if

it met the following criteria: visible bulb stenosis, distal ICA diameter

of �3 mm, and distal ICA/distal ECA ratio of �1.25. These criteria

were further adapted from those used by Bartlett et al18 to recognize
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subtle near-occlusions on CTA and originally adapted from standard

conventional angiography.18,19

The presence of ulceration was determined on contrast MRA im-

ages by using a size threshold of 2 mm as previously described with

CTA (Fig 1B).12 Intraluminal thrombus was defined by an intralu-

minal filling defect on MRA axial reformats, previously described on

CTA (Fig 1C).20 In arteries from patients with renal failure (glomer-

ular filtration rate,�30 mL/min/1.73 m2; 68/726; or 9.4% of carotid-

brain image pairs), the above imaging markers were determined

from 3D noncontrast TOF with 1-mm section thickness combined

with duplex sonography. Maximum plaque thickness was measured

in the transverse plane on MPRAGE images (Fig 1D). IPH was de-

fined quantitatively as MPRAGE-positive plaque, with at least 1 voxel

demonstrating at least a 2-fold higher signal intensity relative to the

adjacent sternocleidomastoid muscle as previously described (Fig

1D; right carotid is MPRAGE-positive; left side of image).6

Statistical Analysis
A mixed-effects multivariable logistic regression model was used.

This model accounted for 2 vessels per patient. The multivariable

logistic regression model was fitted for the outcome of carotid

IPH, with carotid imaging predictors including percentage diam-

eter stenosis, millimeter stenosis, maximum plaque thickness, ul-

ceration, and intraluminal thrombus. Clinical covariates included

age, male sex, diabetes, hypertension, hyperlipidemia, and body

mass index. Cardiovascular medication confounders included

antihypertension, antiplatelet, anticoagulation, and statin medi-

cation classes. In addition, magnet strength (3T or 1.5T) was in-

cluded as a potential confounder in the logistic regression model.

A backward-elimination method was used to determine the final

model, in which all remaining predictors had a P � .10. Odds

ratios and P values were reported for each factor alone and for the

factors found to be significant from the backward elimination.

Receiver operating characteristic comparison analysis was per-

formed to determine the discriminatory value of the final model

compared with the following: 1) a model using only plaque thick-

ness, 2) a model using only percentage stenosis as a continuous

variable, and 3) a model by using only plaque ulceration. All sta-

tistical analyses were performed with STATA, Version 13.1 (Stata-

Corp, College Station, Texas).

RESULTS
Patient Demographics
Patient demographics are listed by vessel and depicted in Table 1.

FIG 1. Carotid plaque imaging markers. Stenosis is measured by using percentage diameter stenosis [(a � b) / a] and millimeter stenosis (b) (A,
cursors). The presence of ulceration is determined on contrast MRA images by using a 2-mm measurement threshold (B, arrow). Intraluminal
thrombus is defined as a filling defect on contrast MRA images (C, arrow). IPH is defined by MPRAGE-positive plaque, by using a signal threshold
of 2-fold signal intensity over the adjacent sternocleidomastoid muscle (D, right carotid artery is MPRAGE-positive; left side of image). Maximum
plaque thickness is measured in the transverse plane on 3D MPRAGE image (D, cursors).
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Carotid Plaque Markers and Stroke Imaging
The carotid imaging features used in this study included the out-

come, IPH, and predictors, including percentage diameter steno-

sis, millimeter stenosis, maximum plaque thickness, ulceration,

and intraluminal thrombus as described in the “Materials and

Methods” section (Fig 1).

Multivariable Logistic Regression
Intraplaque hemorrhage predictors are depicted in Table 2,

with odds ratios adjusted by using multivariable logistic

regression.

Final Multivariable Logistic Regression Model
The final model for predictors of carotid IPH is depicted in Table

3. After backward elimination with a threshold of P � .10, the

remaining significant factors predicting carotid IPH included

maximum plaque thickness (OR � 2.20; P � .001; 95% confi-

dence interval, 1.50 –3.22), millimeter stenosis (OR � 0.46;

P � .001; 95% CI, 0.30 – 0.71), ulcer-

ation (OR � 4.25; P � .020; 95% CI,

1.25–14.4), age (OR � 1.11; P � .001;

95% CI, 1.05, 1.18), and male sex (OR �

3.23; P � .077; 95% CI, 0.88, 11.9). Note

that millimeter stenosis is a measure of

the lumen diameter (b) at the level of

stenosis described in the “Materials and

Methods” section. Thus, carotid plaque

with severe stenosis (small b) is associ-

ated with IPH, and carotid plaque with-

out stenosis (large b) is not associated

with IPH. This difference accounts for

the seemingly counterintuitive OR of

0.46 in the final model. In addition, per-

centage diameter stenosis measured by

NASCET is not in the final model due to

the nonsignificant P � .10 during back-

ward elimination. If, alternatively, milli-

meter stenosis was not measured, then

percentage stenosis would meet the

P � .10 criteria (full model: OR � 23.7;

P � .003; 95% CI, 3.00 –187.2; final

model: OR � 31.0; P � .001; 95% CI,

3.89 –246.2). However, because we mea-

sured both percentage and millimeter

Table 1: Patient demographics

Carotid Stroke Predictor
Demographics

by Vessel
Male sex (No./total No.) (%) 387/726 (53.3)
Age (yr) (mean) (SD) 64.2 (15.6)
BMI (mean) (SD) (kg/m2) 28.4 (6.4)
Smoking (No./total No.) (%)

Current smoker 138/726 (19.0)
Prior smoker 158/726 (21.8)
Never smoked 430/726 (59.2)

Hypertension (No./total No.) (%) 499/726 (68.7)
Hyperlipidemia (No./total No.) (%) 358/726 (49.3)
Diabetes (No./total No.) (%) 227/726 (31.3)
Cardiovascular medications

Antihypertension (No./total No.) (%) 412/726 (56.8)
Statins (No./total No.) (%) 316/726 (43.5)
Antiplatelet (No./total No.) (%) 294/726 (40.5)
Anticoagulation (No./total No.) (%) 74/726 (10.2)

Carotid plaque imaging markers
Stenosis (mean) (SD) (%) 12.2 (23.1)

Mild stenosis (0%–49%) (No./total No.) (%) 647/726 (89.1)
Moderate stenosis (50%–69%) (No./total No.) (%) 45/726 (6.2)
Severe stenosis (70%–99%) (No./total No.) (%) 34/726 (4.7)

Stenosis (mean) (SD) (mm) 4.1 (1.2)
Maximum plaque thickness (mean) (SD) (mm) 3.0 (1.6)
Ulceration (No./total No.) (%) 96/726 (13.2)
Intraluminal thrombus (No./total No.) (%) 19/726 (2.6)
Intraplaque hemorrhage (No./total No.) (%) 65/726 (9.0)

Magnet strength � 3T (No./total No.) (%) 58/726 (8.0)

Note:—BMI indicates body mass index.

Table 2: Multivariable logistic regression
Carotid-IPH Predictor IPH+ (n = 65) IPH− (n = 661) OR P Value 95% CI

Cardiovascular risk factors
Male sex (No./total No.) (%) 55/65 (70.0) 332/661 (50.2) 3.05 .104 0.79 11.7
Age (yr) (mean) (SD) 76.0 (9.7) 63.1 (15.6) 1.11 .003 1.04 1.19
BMI (yr) (mean) (kg/m2) 26.8 (4.0) 28.5 (6.6) 0.94 .325 0.84 1.06
Smoking (No./total No.) (%)

Current smoker 12/65 (18.5) 126/661 (19.1) 1.52 .620 0.29 7.88
Prior smoker 24/65 (36.9) 134/661 (20.3) 1.74 .399 0.48 6.36

Hypertension (No./total No.) (%) 46/65 (70.8) 453/661 (68.5) 0.30 .126 0.06 1.41
Hyperlipidemia (No./total No.) (%) 46/65 (70.8) 312/661 (47.2) 1.08 .895 0.33 3.62
Diabetes (No./total No.) (%) 23/65 (35.4) 204/661 (30.9) 1.04 .948 0.33 3.30

Cardiovascular medications (No./total No.) (%)
Antihypertension 43/65 (66.2) 369/661 (55.8) 2.70 .170 0.65 11.1
Statin 42/65 (64.6) 274/661 (41.5) 1.24 .749 0.33 4.70
Antiplatelet 38/65 (58.5) 256/661 (38.7) 1.07 .922 0.29 3.88
Anticoagulation 7/65 (10.8) 67/661 (10.1) 0.63 .628 0.10 4.00

Carotid plaque imaging markers
Stenosis (mean) (SD) (%) 46.5 (30.1) 8.9 (19.3) .09 .409 0.0003 25.7
Stenosis (mean) (SD) (mm) 2.5 (1.5) 4.3 (1.0) 0.31 .052 0.09 1.01
Maximum plaque thickness (mean) (SD) (mm) 5.4 (1.9) 2.8 (1.4) 2.26 �.001 0.09 1.01
Ulceration (No./total No.) (%) 34/65 (52.3) 62/661 (9.4) 4.36 .017 1.30 14.7
Intraluminal thrombus (No./total No.) (%) 5/65 (7.7) 14/661 (2.1) 0.49 .496 0.06 3.85
Magnet strength � 3T (No./total No.) (%) 16/65 (24.6) 42/661 (6.4) 1.63 .544 0.34 7.82

Note:—BMI indicates body mass index.
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stenosis and millimeter stenosis was a better predictor of IPH, we

have kept it in the final model.

Receiver Operating Characteristic Comparison Analysis
Receiver operating characteristic comparison analysis is shown in

Fig 2. The final model discriminatory value was excellent (area

under the curve [AUC] � 0.932) and was significantly higher than

models using only plaque thickness (AUC � 0.881), only milli-

meter stenosis (AUC � 0.830), or only ulceration (AUC � 0.715,

P � .001.

DISCUSSION
Along with other clinical and imaging factors, carotid IPH allows

optimal prediction of carotid sources of stroke.8 Currently, opti-

mal medical treatment for carotid IPH is unknown. It is, there-

fore, essential to determine predictors of IPH. These predictors

could be used as surrogate markers to calculate the likelihood for

IPH when MR imaging is not available or is contraindicated. In

addition, these predisposing factors may serve as clues to the

pathogenesis of IPH.

Lumen imaging is far more often used in the work-up of ca-

rotid-source stroke. CTA is also used more frequently than MRA,

by as much as 4 times at our institutions. Lumen imaging of ste-

nosis alone provides poor prediction of IPH.21 This study dem-

onstrates that the presence of lumen markers, such as maximum

plaque thickness, millimeter stenosis, and ulceration combined

with the patient’s age and whether the patient is male, predict

carotid IPH with high discriminatory power.

These results indicate that plaque ulceration is strongly predic-

tive of IPH. This finding may be because both ulceration and IPH are

markers of unstable plaque and frequently coexist. Alternatively, IPH

may predispose to endothelial dysfunction, erosion, and eventual

ulceration through proinflammatory effects of iron on reactive oxy-

gen species formation.22 Plaque ulceration has been previously sug-

gested as a surrogate marker of carotid IPH.12 Our research argues

that while ulceration is an essential predictor of IPH, it cannot fully

act as a surrogate for IPH without determining the other clinical and

imaging factors in the regression analysis. In the assessment of ca-

rotid stroke risk, the presence of ulceration alone could prompt fur-

ther evaluation with MR imaging to assess IPH.

Our study also shows that maximum plaque thickness is an

essential predictor of IPH. This suggests that larger plaques are

inherently more unstable and prone to hemorrhage, potentially

due to a larger lipid-rich core and/or a higher number or more

permeable plaque neovessels. Delayed contrast imaging may al-

low better detection of lipid-rich cores, and dynamic contrast-

enhanced MR imaging may better characterize microvascularity

predisposing to IPH.23,24

In addition to plaque thickness, millimeter stenosis was a sig-

nificant indicator of IPH. Most interesting, millimeter stenosis

was a better predictor than percentage diameter stenosis, and

when both were used, percentage stenosis was eliminated from

the final model due to its failure to achieve significance. In sup-

port of this, millimeter stenosis has been shown to be a reliable

measurement with low interobserver variability.19 The single

measurement of millimeter stenosis is without the inherent vari-

ability of NASCET ratios with 2 measurements and variable distal

ICA caliber within and between patients.

It is unclear why millimeter stenosis adds further value to

plaque thickness in the prediction of IPH. One possibility is that

higher degrees of stenosis are associated with further impaired

flow dynamics and oscillatory shear stress. In apolipoprotein E mice

on a Western diet and treated with angiotensin II and carotid liga-

tion, IPH develops in areas of stenosis and low wall shear stress.25

This is likely related to altered endothelial cell mechanotransduction,

because low mean shear stress and oscillatory shear stress lead to

endothelial reactive oxygen species formation in cell culture mod-

els.26-29 The shear stress environment at branch points and stenotic

vessels could act to sustain IPH through oxidative stress, chronic

plaque inflammation, and sustained neovessel permeability.

Of the clinical factors assessed in this study, only patient age

and male sex were found to significantly increase the risk of IPH.

Both of these factors have been associated with IPH in recent

research.13 Atherosclerosis has long been known to be an age-

related phenomenon. Arterial plaques form preferentially at

branch points and may be fundamental to the process of aging,

having been found in ancient mummies from at least 4 different

cultures.30 Aging may lead to atherosclerosis via increased levels

of oxidative stress, DNA damage, mitochondrial dysfunction, and

altered balance of cell proliferation and apoptosis.31

While the correlation with age is not surprising, what specific

role male sex plays in the development of IPH remains to be seen.

It has long been known that atherosclerosis incidence is lower in

women compared with men, but this increases after menopause,

suggesting an atheroprotective effect of estrogen.32 However, ran-

domized controlled clinical trials have found no benefit to estro-

gen therapy in cardiovascular disease.33 Androgens may also ben-

efit male patients through direct action on the vasculature or

FIG 2. Receiver operating characteristic comparison analysis. The fi-
nal model IPH discriminatory value is excellent (blue, AUC � 0.932).
The final model discriminatory value (blue) is significantly higher than
a model with maximum plaque thickness only (yellow, AUC � 0.881,
P � .001), a model with millimeter stenosis only (red, AUC � 0.830,
P � .001), and a model with ulceration only (green, AUC � 0.715, P � .001).

Table 3: Final model
Carotid IPH predictor OR P Value 95% CI

Ulceration 4.25 .020 1.25 14.4
Male sex 3.23 .077 0.88 11.9
Maximum plaque thickness 2.20 �.001 1.50 3.22
Age 1.11 .001 1.05 1.18
Stenosis (mm) 0.46 �.001 0.30 0.71
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through a more favorable lipid profile, though the effect of andro-

gen therapy after andropause is unknown.34 There may also be sex

differences accounting for platelet activation, coagulation, and

endothelial cell function that may contribute to plaque inflamma-

tion and IPH.35

In conclusion, this study identifies lumen markers and clinical

factors that can predict IPH with a high discriminatory power.

These predictors provide clues to the pathogenesis of IPH. In

addition, when MR imaging is not available or contraindicated,

these markers may allow clinicians to estimate the likelihood of

IPH being present. Identifying patients who are likely to be neg-

ative for IPH can prevent unneeded surgeries or interventions.

Furthermore, prescreening patients before they undergo MRA

can significantly improve the positive or negative predictive value

of T1-weighted sequences in identifying IPH. This will be impor-

tant in recruiting patients for future studies aimed at determining

optimal IPH treatment.

CONCLUSIONS
Optimal prediction of carotid IPH is achieved by using informa-

tion on maximum plaque thickness, millimeter stenosis, ulcer-

ation, patient age, and male sex. These factors can be used to

determine IPH with a high discriminatory power and may pro-

vide clues to the pathogenesis of IPH. Together, they may also be

used to determine whether IPH is present in patients in whom MR

imaging is contraindicated.
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