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Neuroimaging Features of Neurodegeneration
with Brain Iron Accumulation

SUMMARY: NBIA characterizes a class of neurodegenerative diseases that feature a prominent
extrapyramidal movement disorder, intellectual deterioration, and a characteristic deposition of iron in
the basal ganglia. The diagnosis of NBIA is made on the basis of the combination of representative
clinical features along with MR imaging evidence of iron accumulation. In many cases, confirmatory
molecular genetic testing is now available as well. A number of new subtypes of NBIA have recently
been described, with distinct neuroradiologic and clinical features. This article outlines the known
subtypes of NBIA, delineates their clinical and radiographic features, and suggests an algorithm for

ABBREVIATIONS: ACP = aceruloplasminemia; CNS = central nervous system; FAHN = fatty acid
hydroxylase-associated neurodegeneration; INAD = infantile neuroaxonal dystrophy; KRS = Kufor-
Rakeb syndrome; NAD = neuroaxonal dystrophy; NBIA = neurodegeneration with brain iron
accumulation; NFT = neuroferritinopathy; PKAN = pantothenate kinase-associated neurodegen-
eration; PLAN = phospholipase-associated neurodegeneration; SENDA = static encephalopathy of

childhood with neurodegeneration in adulthood; WSS = Woodhouse-Sakati syndrome

B efore the widespread availability of MR imaging, a diag-
nosis of NBIA could be made only at the time of autopsy.
In contrast, current diagnosis is facilitated by evaluation by
using both T'1- and T2-weighted sequences. As a paramagnetic
substance, Fe™ catalyzes the nuclear spin relaxation of neigh-
boring water protons. With standard clinical parameters, ar-
eas rich in iron appear hypointense on T2-weighted se-
quences, and isointense on T1 sequences. T2*-weighted
acquisitions (gradient-echo sequences) may accentuate this
degree of hypointensity (“blooming”) and may be helpful in
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identifying NBIA disorders as may susceptibility-weighted
images.' In biologic iron-oxides, Fe*" typically has fewer un-
paired electrons than Fe’* and is less effective in quenching
T2-weighted signal intensity.> Calcium may also appear isoin-
tense on T1 and hypointense on T2-weighted sequences,
mimicking the appearance of iron. The 2 minerals are readily
distinguished by CT, however, because Ca>* characteristically
appears hyperintense to the surrounding brain parenchyma,
while iron is isointense. In addition, iron typically appears
markedly hypointense on both standard clinical diffusion-
weighted and apparent diffusion coefficient sequences. Other
metals that may be deposited in neurodegenerative disorders,
such as manganese and copper, have a distinct appearance on
T1-and T2-weighted sequences, enabling a heuristic approach
to diagnosis based on MR imaging parameters. The character-
istics of these metals are summarized in Table 1. Despite the
utility of MR imaging in this setting, it does not preclude the
need for elemental analysis of neuropathologic specimens;
rather, it enables putative diagnosis to be made during life.

The radiographic appearance of the lesions themselves is of
prime importance. Iron deposition occurs in multiple sclero-
sis,” human immunodeficiency virus dementia,* Freidrich
ataxia,” and Alzheimer and Parkinson diseases,’ though to a
lesser degree than that seen in NBIA (Fig 1). As a neurometa-
bolic disorder, NBIA leads to an approximately symmetric dis-
tribution of iron in key gray matter nuclei that are themselves
intrinsically enriched in their iron content in healthy individ-
uals (globus pallidus, substantia nigra, red nucleus, dentate
nucleus, putamen, and thalamus).” In contrast, although in-
tracranial hemorrhage may lead to T2-weighted hypointen-
sity, the breakdown of heme-containing moieties is unlikely to
lead to a symmetric discoloration of the basal ganglia. Instead,
it is more likely to lead to a variegated appearance, depending
on the stage of the hemorrhage, and to gradually resorb with
serial imaging. In some cases, the appearance of striatonigral
calcinosis may mimic that of NBIA, and deposition may be
remarkably symmetric,® making it difficult to distinguish the 2
entities. In such cases, CT may be helpful.

MR imaging scanners with higher magnetic field strengths
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Table 1: Neuroimaging features of clinically relevant metals

Metal
Ca?* Hypo-/hyperintense

T, Appearance T, Appearance Other Features

Hypointense Hyperdense on CT

Fe®* Isointense Hypointense Isodense on CT
Mn?* Hyperintense Isointense
Cu?* Iso-/hyperintense Hypo-/hyperintense

Note:—Mn?* indicates manganese ions; Cu?*, copper ions.

have increased sensitivity to iron when using T2- and T2*-
weighted acquisitions. This becomes clinically important
when comparing 1T or 1.5T scans with those obtained by us-
ing 3T magnets. The degree of hypointensity in the globus
pallidus and substantia nigra is markedly more robust in 3T
magnets.” In addition, the degree of hypointensity increases
with age, consistent with an age-dependent iron deposi-
tion,'”!! both in normal aging and in NBIA. To correctly iden-
tify excess iron clinically, one must thus have a working
knowledge of both age- and field-dependent norms. MR im-
aging techniques that are not yet in widespread clinical use
include quantitative T2 mapping sequences, which may be
useful in quantifying iron content.'?

Most interesting, iron deposition detectable by MR imag-
ing may precede the development of clinical symptoms, as
evidenced by the identification of an “eye-of-the-tiger” in pre-
symptomatic mutation-positive siblings of children affected
by PKAN."? In contrast, children with INAD may develop iron
deposition later in their disease course or not at all.'"* The
observation that the degree of iron deposition correlates in-
completely with clinical symptoms suggests that though iron
is a useful neuroimaging feature in NBIA, it likely is neither
necessary nor sufficient to produce the disease phenotype.
This has important clinical implications because clinical trials
are currently underway for deferiprone, a chelating agent
known to traverse the blood-brain barrier.'> Deferiprone has
been shown to reverse iron deposition in Friedreich ataxia,
associated with an appreciable decrease in iron content as
measured by MR imaging.'? It remains to be seen whether this
agent will have a similar effect in NBIA and whether decreas-
ing the brain iron burden will affect patients’ clinical courses.

Subtypes of NBIA and Associated Neuroimaging Features
All of the NBIA disorders feature iron deposition in the globus
pallidus but differ in the co-occurrence of other findings. They
are unified by the clinical constellation of a movement disor-
der and neurodegenerative course. All are autosomal recessive
except for neuroferritinopathy. However, disease onset is vari-
able and may range from early childhood to old age. Clinical
features and severity may vary with the age of onset and the
nature of the underlying mutation, though genotype-pheno-
type correlations are incomplete.'* Idiopathic forms of NBIA,
whose responsible genes await identification, may account for
up to 40% of cases. An algorithm describing an approach to
diagnosis using clinical and neuroimaging features is pre-
sented in Fig 2.

PKAN

PKAN is caused by mutations in PANK2.'® PKAN is the most
frequently encountered subtype of NBIA, though still a rare
disorder, with an estimated prevalence of ~1:1,000,000. Clas-
sic PKAN begins in childhood, with profound dystonia, dys-
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arthria, spasticity and pyramidal tract signs, and pigmentary
retinopathy, leading to night blindness and visual field con-
striction. Intellectual deterioration is variable and tends to be
more severe in those with earlier disease onset.'” In later onset
atypical forms, dystonia often manifests with prominent oro-
buccolingual action-induced eating dystonia. Parkinsonism
(rigidity, bradykinesia, palilalia, and freezing) and prominent
neuropsychiatric features, such as hyperactivity, impulsivity,
obsessive-compulsive disorder, and vocal and motor tics, can
be seen, as well as depression and anxiety. Seizures and periph-
eral neuropathy are not typical of PKAN.

MR imaging reveals evidence of iron deposition in the glo-
bus pallidus and, to a lesser extent later in the disease, the
substantia nigra. In addition, the so-called eye-of-the-tiger
sign is virtually pathognomonic of the disorder. The eye-of-
the-tiger is produced by a T2-weighted hypointense globus
pallidus with a central anteromedial region of T2 hyperinten-
sity (Fig 3). Histopathologically, the “eye” corresponds to a
region of profound rarefaction surrounded by relatively more
preserved iron-laden neuropil, neurons, and astrocytes.'®
Other forms of NBIA have been purported to exhibit an eye-
of-the-tiger"'® but feature subtle differences in the appearance
of the globus pallidus lesion, including asymmetry, irregular
contour, and lateral displacement (Fig 3 versus 4). The central
T2-weighted hyperintensity in PKAN may become more in-
tensified with time, appearing to consolidate on serial imaging
studies,”” or it may fade with time.?' This latter scenario may
contribute to some of the cases of PKAN that do not have the
typical eye-of-the-tiger appearance.”’ Multiple-system atro-
phy,* cortical basal ganglionic degeneration,** multiple scle-
rosis, and neurofibromatosis may also cause similar-appear-
ing lesions but typically differ in their clinical presentation,
course, and/or associated imaging features. Conditions that
lead to an eye-of-the-tiger-like appearance in non-NBIA dis-
orders characteristically lack the T2-weighted hypointensity
indicative of iron deposition. White matter abnormalities are
conspicuously absent in PKAN.

NAD

Mutations in the gene encoding calcium-independent phos-
pholipase A, (PLA2G6) lead to NAD,** which is subdivided
into INAD and later-onset atypical forms. INAD is typified by
developmental arrest, then regression of language and motor
skills. Affected children are profoundly hypotonic and later
develop a progressive spastic quadriplegia with pyramidal dys-
function. Optic atrophy leads to loss of visual acuity and ulti-
mate blindness. Dementia is usually relentlessly progressive. A
progressive peripheral neuropathy leads to hyporeflexia. Sei-
zures sometimes occur. Dystonia tends to be milder than that
in PKAN but may occur. Ataxia/dysmetria may also be seen.
Atypical NAD may present with progressive spasticity, ataxia,
and dystonia, along with optic atrophy, peripheral neuropa-
thy, and cognitive impairment.

Radiographically, NAD often features iron deposition in
the globus pallidus. The substantia nigra may also be affected.
Significant atrophy of both the cerebellar vermis and hemi-
spheres is a frequent feature and typically precedes iron accu-
mulation (Fig 5). Confluent T2 hyperintensities in white mat-
ter may be observed, though these are less prominent than in
some other forms of NBIA.



Fig 1. T2-weighted MR imaging appearance of a healthy 60-year-old woman (A), a 66-year-old woman with idiopathic Parkinson disease (B), and a 16-year-old female patient with idiopathic
NBIA (C) obtained on a 1.5T scanner by using standard clinical TEs and TRs.

MRI evidence of globus pallidus
iron deposition

‘ ., T1 substantia nigra
Eye(ofthe tiger l l hyperintensity
PKAN SENDA ) .
T2 white matter . Unique clinical course T2 hypointensity of
Alopecia, caudate, putamen,

hyperintensity ——

endocrine and/or thalamus
l dysfunction WSS / l l
Cerebellar Brain stem FAHN NFT KRS ACP
atrophy atrophy
Patchy FFF mini- Simultaneous,
Involvement myoclonus confluent
of BG, +/- T2 Cerebral involvement
hyperintensity  atrophy of BG and
(‘cavitation’) cortex; T2 WM
NAD hyperintensity;
Peripheral neuropathy cerebellar
atrophy

Fig 2. A clinical- and neuroimaging-based algorithm for evaluating patients with suspected NBIA. BG indicates basal ganglia; WM, white matter; FFF, facial-faucial-finger

NFT
A Huntington disease phenocopy,” NFT is the only known
autosomal dominant form of NBIA and is caused by muta-
tions in the FTL gene, leading to ferritin aggregation in the
brain and on skin biopsy. Affected patients may present in
adolescence to older adulthood. Extrapyramidal features may
be complex, combining parkinsonism, choreoathetosis,
dystonia, tremor, and ataxia. Frontal lobe or subcortical de-
mentia often occurs after the onset of motor symptoms, and
autonomic features may occur. A supranuclear gaze palsy may
be observed. No ophthalmologic findings or seizures are typ-
ical. Serum ferritin levels are frequently decreased.*®
Neuroimaging of NFT may demonstrate high T2 signal

intensity in the basal ganglia early in the course of the disease.
This may be mixed with low T2 signal intensity indicative of
iron deposition at later stages. However, in general, excess iron
deposition becomes evident in the putamen, globus pallidus,
and dentate nucleus (Fig 4). The caudate and thalamus may
also be involved. Cystic cavitation evolves with time and may
be preceded by hyperintense T1-weighted signal intensity,
particularly in the putamen and globus pallidus. Mild cerebral
and cerebellar atrophy may be seen.

ACP
Loss of function mutations in the CP gene, encoding the
protein ceruloplasmin, lead to misregulation of both sys-
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Fig 3. PKAN. A and B, The eye-of-the-tiger sign begins with T2 hyperintensity within the globus pallidus. C and D, Iron subsequently accumulates with time. Cerebral and/or cerebellar

atrophy and white matter hyperintensity are not typical features.

Fig 4. NFT. A, Patchy hypointensity is typically seen within multiple deep gray nuclei, including the caudate, putamen, globus pallidus, and thalamus in symptomatic cases. B, Concurrent
T2 hyperintensities (cavitation) may be seen within regions of hypointensity. Images courtesy of P.F. Chinnery.

Fig 5. NAD. Iron deposition may be seen in the globus pallidus (A) and the substantia nigra (B) on T2* and T2 images. C, Confluent white matter hyperintensities may be seen on
fluid-attenuated inversion recovery sequences as well. D, Global cerebellar atrophy is a frequent feature.

temic and CNS iron trafficking because ceruloplasmin is
critical for the function of ferroportin, a cellular iron ex-
porter.”” Ceruloplasmin also has ferroxidase activity, which
plays a role in iron mobilization.?® This leads to both CNS
and peripheral iron deposition. ACP mutation-positive in-
dividuals typically develop symptoms in mid-adulthood.
Clinically, affected patients may have blepharospasm, cho-
rea, craniofacial dyskinesias, ataxia, and retinal degenera-
tion. Diabetes and liver involvement are common compli-
cations putatively related to iron deposition in the viscera.
T2-weighted hyperintensity in white matter may be prom-
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inent. Serum studies typically demonstrate undetectable
ceruloplasmin and reduced copper levels and often demon-
strate depressed serum iron levels and a microcytic hypo-
chromic anemia as well as elevated ferritin.

Similar to what occurs in NFT but in contrast to most
other forms of NBIA, widespread brain iron deposition de-
velops in ACP, with MR imaging evidence of involvement
of the caudate, putamen, globus pallidus, thalamus, red
nucleus, and dentate (Fig 6). Cerebellar atrophy may also
occur as well as hypointensity on T1-weighted imaging in
regions of T2 hypointensity.



Fig 6. ACP. A and B, More homogeneous iron deposition is seen within the basal ganglia, with juxtaposed confluent white matter hyperintensities on T2-weighted sequences. Images

courtesy of H. Miyajima.

Fig 7. FAHN. Evidence of iron deposition in the globus pallidus (4) and, to a lesser extent, the substantia nigra (B) may be seen on T2-weighted images. C, Confluent white matter
abnormalities may be apparent on T2/fluid-attenuated inversion recovery sequences. 0, Mild cerebral atrophy may occur, along with significant pontocerebellar atrophy and thinning of
the corpus callosum (A).

FAHN

FAHN is a recently described NBIA subtype caused by muta-
tions in FA2H.*® FAHN typically begins with focal dystonia
and gait impairment. Ataxia follows, and dysarthria and pro-
gressive spastic quadriparesis with pyramidal tract signs de-
velop. Strabismus and nystagmus may ensue, along with optic
atrophyleading to progressive loss of visual acuity. Intellectual
performance is variable, and the intellect may be relatively
spared in some cases. Seizures may be observed later in the
disease course and are typically responsive to anticonvulsants.
The disorder is similar in many ways to NAD, except that
neither the peripheral neuropathy nor the profound axial hy-
potonia observed in NAD is a feature.

Neuroimaging features of FAHN include the characteristic
presence of iron in the globus pallidus. The substantia nigra
may be affected to a lesser degree. Other features include con-
fluent subcortical and periventricular white matter T2 hyper-
intensities along with thinning of the corpus callosum. Cere-
bellar and brain stem atrophy increase with time and may be
profound (Fig 7).

KRS

KRS, originally identified as a parkinsonian syndrome, has
recently been characterized as a form of NBIA.>*?! KRS is
caused by mutations in the ATP13A2 gene. Clinical features of
KRS include prominent parkinsonism (hypomimia, rigidity,

festination, and bradykinesia), anarthria, spastic paraparesis,
and pyramidal tract signs. Dementia is part of the typical con-
stellation of symptoms. Distinguishing features include a su-
pranuclear gaze palsy, oculogyric crises, and facial-faucial-
finger minimyoclonus. Aggression and episodes of psychosis,
including frank hallucinations, may occur.

Evaluation of MR imaging findings may disclose general-
ized cerebral, cerebellar, and brain stem atrophy, along with
progressive atrophy of the pyramids. Globus pallidus, caudate,
and putamen T2 hypointensity justifies consideration as an
NBIA disorder (Fig 8).

WSS

Mutations in c2orf37, encoding a nucleolar protein, were re-
cently identified in patients with WSS.’* Clinically, affected
individuals develop progressive dystonia, with or without
choreoathetosis. Pyramidal tract involvement is usually not a
prominent feature. Peripheral neuropathy may be seen in a
subset of patients with WSS. Intellectual impairment is typical
and may be progressive. Characteristic phenotypic features
include a dysmorphic facial appearance, polyendocrine dys-
function (diabetes mellitus, hypogonadotropic hypogonad-
ism), alopecia, sensorineural hearing loss, and flattened T
waves on electrocardiogram. Visual impairment occurs, but in
the form of keratoconus. The hypogonadism observed in WSS
may also occur in murine models of PKAN.?
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Fig 9. WSS. Extensive confluent white matter T2 hyperintensity is typical of the disorder (A and C), while hypointensity of the globus pallidus on T2 sequences is an inconsistent feature
(B). Images courtesy of S. Bohlega.

The most atypical of the NBIA disorders, WSS, neverthe-
less, may feature prominent globus pallidus iron accumula-
tion (Fig 9), though this may be an inconsistent feature. Wide-
spread confluent and marked periventricular T2 white matter
hyperintensities are typical findings.

SENDA

SENDA begins with early childhood intellectual impairment.
Unlike the other forms of NBIA, however, the cognitive dys-
function remains nonprogressive, sometimes for decades, af-
ter first being recognized. Then, in adulthood, affected pa-
tients develop severe dystonia-parkinsonism, and later exhibit
signs of a progressive dementia.’* No etiology has yet been
identified for SENDA.

The neuroimaging of SENDA is distinct. In addition to
iron deposition in the globus pallidus and substantia nigra,
SENDA features T1 hyperintensity of the substantia nigra with
a central band of T1 hypointensity (Fig 10). Significant cere-
bral and milder cerebellar atrophy also occur.
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NBIA Disorders without Iron Deposition

Although NBIA disorders are defined, in part, on the basis of the
characteristic deposition of iron in the brain, mutations in NBIA
genes may not always lead to iron deposition. Indeed, the pheno-
type associated with mutations in NBIA genes may be surpris-
ingly diverse,”” and neuroimaging findings may be similarly vari-
able. For example, iron deposition in NAD may occur later in the
disease course or not at all, and a recently identified allelic form of
parkinsonism-dystonia is caused by mutations in PLA2G6, with
onset in adulthood but without iron deposition on neuroimag-
ing.>® The recognition that mutations in PLA2G6 do not always
lead to a clear NAD phenotype has led investigators to propose
the name PLAN to describe the general class of neurodegenera-
tive disorders caused by mutations in this gene.””

Although recognizing the phenotypic heterogeneity of
NBIA disorders is important, converging evidence implicates
several subtypes of NBIA in a shared pathway linking abnor-
malities of lipid metabolism with fundamental mechanisms
underlying neurodegeneration.”® Given the overlap with other
neurodegenerative disorders, improved understanding of



R

Fig 10. SENDA. Hypointensity of the globus pallidus (A) is overshadowed by that of the substantia nigra and cerebral peduncles (B) on T2-weighted imaging. C, T1 sequences demonstrate
hyperintensity of the substantia nigra and cerebral peduncles with central linear hypointensity. D, Global cerebral atrophy is also a feature.

Table 2: Comparison of neuroimaging features in NBIA

White Matter
Disorder Iron Deposition Involvement Other Findings
PKAN Globus pallidus, substantia nigra (mild) No Eye-of-the-tiger sign
PLAN Globus pallidus,® substantia nigra® Mild Moderate cerebellar atrophy
NFT “Patchy” globus pallidus, putamen, caudate, dentate, thalamus Mild, moderate Cystic cavitation, mild cerebral, cerebellar atrophy
ACP Globus pallidus, putamen, caudate, thalamus, red nucleus, dentate Moderate, severe Mild cerebellar atrophy
FAHN Globus pallidus, substantia nigra® Moderate Pontocerebellar atrophy
KRS Globus pallidus, putamen, caudate® Severe cerebral, cerebellar, brain stem atrophy

WSS Globus pallidus®
SENDA  Substantia nigra, globus pallidus

Severe, confluent

Occasional Midbrain T1 hyperintensity

@ Inconsistent finding.

b Numbers of genetically confirmed cases are still too small to determine the frequency of iron deposition.

NBIA may lead to parallel insights into related synucleinopa-
thies and tauopathies.*®*°

Conclusions

MR imaging is of tremendous utility in the evaluation of brain
iron disorders and facilitates clinical diagnosis. Despite its use-
fulness as a biomarker, the pathophysiologic role of iron de-
position in NBIA remains uncertain. Associated MR imaging
abnormalities may help to distinguish subtypes of NBIA and
facilitate a more definitive diagnosis (Table 2). New applica-
tions of MR imaging in NBIA, including the evaluation of
disease evolution in clinical trials and the quantification of
iron content in vivo, may facilitate efforts to develop treat-
ments for these devastating diseases.
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