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BACKGROUND AND PURPOSE: TA is a branch of image processing that seeks to reduce image
information by extracting texture descriptors from the image. TA of MR images of anatomic structures
in mild AD and aMCI is not well-studied. Our objective was to attempt to find differences among
patients with aMCI and mild AD and normal-aging subjects, by using TA applied to the MR images of
the CC and the thalami of these groups of subjects.

MATERIALS AND METHODS: TA was applied to the MR images of 17 patients with aMCI, 16 patients
with mild AD, and 16 normal-aging subjects. The TA approach was based on the GLCM. MR images
were T1-weighted and were obtained in the sagittal and axial planes. The CC and thalami were
manually segmented for each subject, and 44 texture parameters were computed for each of these
structures.

RESULTS: TA parameters showed differences among the 3 groups for the CC and thalamus. A
pair-wise comparison among groups showed differences for AD-control and aMCI-AD for the CC; and
for AD-control, aMCI-AD, and aMCI-control for the thalamus.

CONCLUSIONS: TA is a useful technique to aid in the detection of tissue alterations in MR images of
mild AD and aMCI and has the potential to become a helpful tool in the diagnosis and understanding
of these pathologies.

ABBREVIATIONS: AD � Alzheimer disease; aMCI � amnestic mild cognitive impairment; ANGSEC-
MOM � angular second moment; CC � corpus callosum; CORRELAT � correlation; CDR � Clinical
Dementia Rating; cont � control; d � distance; DIFVARNC � difference variance; DTI � diffusion
tensor imaging; GLCM � gray level co-occurrence matrices; IDM � inverse difference moment;
MCI � mild cognitive impairment; � � direction; VBM � voxel-based morphometry; SUMAVERG �
sum average; TA � texture analysis

AD is the most common type of dementia, affecting more
than 25 million people around the world.1 It is a progres-

sive neurodegenerative disorder that gradually deprives the
patient of cognitive and behavioral functions. One of the main
pathologic features of AD is neuronal loss with consequent
brain atrophy, mainly in the medial temporal structures,
though several other cerebral regions may be affected even in
the early phase of the disease.2

MCI is a widely used term for cognitive problems that do
not fulfill the criteria for dementia. It is generally used to refer
to a transitional phase between normal cognitive function and
clinically probable AD.3 Episodic memory is the most com-
monly affected cognitive domain, especially the capacity for
retaining new information. Thus, MCI is usually classified as
aMCI (single and multiple-domain) and nonamnestic (single
and multiple-domain). Patients with aMCI have a higher
chance of developing AD than age-matched subjects without

cognitive problems/findings, and several authors support the
idea of a continuum in the brain pathology of normal aging,
aMCI, and AD.4

Several MR imaging methods have been applied to study
mild AD and its possible prodromal states, like aMCI, aiming
to identify the Alzheimer pathology in its earlier phase. These
methods include region-of-interest volumetry,5 VBM,6,7 pro-
ton spectroscopy,8 and DTI,9 among others. In this work, we
used the technique of TA, applied to T1-weighted MR images
of the brain, to attempt to differentiate among patients with
mild AD, aMCI, and control subjects matched for age and
education.

In image analysis, the term “texture” can be understood as
a group of image properties that relate to the intuitive notions
of coarseness, rugosity, smoothness, and so forth. Many ap-
proaches have been developed for extracting texture charac-
teristics from digital images, such as transform-based, struc-
tural-based, and statistical-based methods.10 Our study used a
statistical approach,11 which extracts texture information
from the image on the basis of the gray level distribution of
pairs of pixels. This type of approach is very useful in medical
images because it does not rely on matching primitive forms as
structural approaches do, for example.12

In fact, the application of the TA technique to medical im-
ages is not new. It has been applied to a large variety of pathol-
ogies, by using many different approaches. For example, Bes-
son et al13 used surface-based features extracted from brain T1
MR images to detect focal cortical dysplasia; Georgiadis et al14
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applied co-occurrence and run-length matrices features to the
characterization of different types of brain tumors. McLaren et
al15 used morphologic, co-occurrence, and Laws texture pa-
rameters in MR images for breast cancer diagnosis; Rachidi et
al 16 assessed osteoporosis through TA (among other tools).
Theocharakis et al17 studied multiple sclerosis by using histo-
gram, co-occurrence, and run-length matrix�based features
extracted from fluid-attenuated inversion recovery MR im-
ages; Zhang et al18 applied TA based on the polar Stockwell
Transform to gadolinium-enhanced T2 MR images, also for
the study of multiple sclerosis.

In particular, a few studies have also applied TA to AD.
Sayeed et al19 used a trace transform�based approach on
brain positron-emission tomography sinograms. In
Kaeriyama et al,20 the analysis of brain MR imaging was done
by using the run-length matrices; in Freeborough and Fox21

and Torabi et al,22 co-occurrence matrix�based features—as
in the present work—were extracted from the whole brain of
patients with AD and healthy subjects; and in a more recent
study, Kodama et al23 used both co-occurrence and run-
length matrix parameters to differentiate among patients with
AD, those with Lewy bodies, and control subjects. To the best
of our knowledge, however, there have been no reported stud-
ies of the application of MR imaging TA to the study of MCI.
Also, given that the texture of various brain regions and struc-
tures is different, the objective of this work was to apply the TA
technique to specific brain structures in MR images (instead of
to the whole brain), in an attempt to differentiate patients with
AD, those with MCI, and healthy subjects.

We opted to study the thalamus and CC because they are
structures with anatomic heterogeneity (especially in AD),
which is a characteristic that can be considered more suitable
for TA. The thalamus is a complex structure composed of
several nuclei, and some of them may be atrophic (especially
the limbic nuclei), while others may be anatomically normal in
AD.23 The same heterogeneity occurs in the CC, where there is
white matter selective damage in areas associated with cortical
atrophy (the medial temporal cortex, for example), with rela-
tive sparing of areas related to motor or visual function.9 Thus
in this work, we studied the level of heterogeneity of the thal-
amus and CC in patients with AD and aMCI compared with
control subjects, and we hypothesized that TA could be a valu-
able tool to differentiate these clinical conditions from normal
aging. Additionally, several recent studies that used volumet-
ric and morphometric approaches have shown thalamic and
callosal atrophy in AD, and some of them in MCI.6,25-28

Materials and Methods
We studied 49 subjects older than 50 years of age: 17 with aMCI, 16

with mild AD (treated at the Unit for Neuropsychology and Neuro-

linguistics, UNICAMP Clinic Hospital), and 16 controls. Routine lab-

oratory examinations for dementia assessment (including B12 and

folate dosage, serology for syphilis, and thyroid hormone measure-

ment) and brain CT were performed in all patients. The research was

approved by the local ethics committee, and all subjects gave their

signed consent for the study.

Diagnosis of aMCI was performed by trained neurologists by us-

ing a standardized mental status battery, which includes evaluation of

episodic memory, orientation, language, attention, abstract thinking,

calculation, and visual perception. The diagnostic process consisted

of a detailed interview with the patient and informant (usually a close

relative of the patient). Diagnosis of MCI was achieved by using the

following criteria of the International Working Group on Mild Cog-

nitive Impairment3: 1) the person is neither healthy nor demented; 2)

there is evidence of cognitive deterioration shown by either objec-

tively measured decline with time and/or a subjective report of decline

by self and/or informant in conjunction with objective cognitive def-

icits; and 3) activities of daily living are preserved, and complex in-

strumental functions are either intact or minimally impaired. Thus, a

diagnosis of aMCI was given if the clinical history and cognitive per-

formance pointed to an exclusive memory deficit and CDR29 score of

0.5, with an obligatory and exclusive memory score of 0.5. This clas-

sification was performed by using a semistructured interview.

For probable AD diagnosis, we used the criteria of the National

Institute of Neurologic and Communicative Disorders and Stroke

and Alzheimer Disease and Related Disorders Association,30 includ-

ing only patients classified as CDR 1. Exclusion criteria were history of

other neurologic or psychiatric diseases, head injury with loss of con-

sciousness, use of sedative drugs in the last 24 hours before the neu-

ropsychological assessment, drug or alcohol addiction, and prior

chronic exposure to neurotoxic substances. The control group con-

sisted of subjects with CDR 0 without previous history of neurologic

or psychiatric disease or memory symptoms.

Scanning Protocol, Segmentation, and TA
High-resolution MR imaging was performed by using a 2T scanner

(Elscint Prestige, Haifa, Israel). T1- and T2-weighted images were

acquired in axial, coronal, and sagittal planes with 1-mm sections. TA

was performed on the T1-weighted images. The segmentation of the

CC and thalamus, our structures of interest, was made by using the

MaZda program,31 which was used for texture-parameter calculation.

This program only allows manual (mouse delineated) segmentation.

However, this is acceptable because these structures are easily discern-

ible in the images. Therefore, segmentation was based on anatomic

criteria, with the assumption that texture in these structures should be

approximately constant along the structure. All segmentations were

checked by an expert neurologist. For the CC, we selected 9 sections

from each image volume: the central section, 4 to the right, and 4 to

the left in the sagittal view. The thalamus was segmented into 5 sec-

tions in the axial view. After segmentation, TA was performed for

each segmented region of interest in the selected sections, also by

using the MaZda program.

The statistical approach adopted here to extract texture parame-

ters from the MR images was based on the GLCMs.10 The GLCMs are

N square matrices, where N is the number of gray levels in the image.

Each element (i, j) of these matrices reports how many times gray level

i co-occurs with gray level j, given the distance d and the direction �

between them (usually d � 1, 2, 3, 4, or 5 pixels and � � 0°, 45°, 90°,

or 135°). From the GLCMs, many texture descriptors31 can be com-

puted. In this work, we used the 11-parameter output of the MaZda

program: angular second moment, contrast, correlation, sum of

squares, inverse difference moment, sum averages, sum variances,

sum entropy, entropy, difference variance, and difference entropy.

Formulae for computation of these parameters can be found in the

On-line Table. Our aim was to see if any of these parameters showed

differences among the groups.

TA was thus achieved computing GLCMs for distances ranging

from 1 to 4 pixels and default MaZda directions (� � 0°, 45°, 90°, or

135°), totaling 16 GLCMs. From these matrices, the aforementioned
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texture descriptors were calculated, totaling 176 texture parameters

for each region of interest.

Because the region-of-interest size for a given structure was not

the same in all sections, a weighted average of the 176 texture param-

eters over the different sections, by using the region-of-interest size as

weight, was computed, by using Matlab (MathWorks, Natick, Mas-

sachusetts). This resulted in a single set of texture parameters for each

structure for each subject. Finally, an average of the parameters over

the different GLCM directions was performed (giving 44 parameters

per subject) because it was expected that textures should be approxi-

mately isotropic (and also, we did not want the positioning of the

patient’s head to interfere in the texture measurement). These param-

eter sets were used in the statistical analysis performed with SYSTAT,

Version 10.2 (Systat Software, San Jose, California).

Initially a comparison among the 3 groups (AD, aMCI, and con-

trol) by using a Kruskal-Wallis test33 was performed. In a second

stage, a pair-wise comparison (aMCI-control, aMCI-AD, and AD-

control) was performed, by using the Mann-Whitney U test.33 Both

analyses sought to find differences among the groups.

Finally, with the aim of providing validation for the technique, we

performed a statistical analysis, also by using the Mann-Whitney U

test for comparing the texture parameters obtained for the left thala-

mus versus the right thalamus of all control subjects. Because these

were healthy subjects, we expected that there should be no statistically

significant differences among the texture parameters of these

structures.

Results
In Tables 1 and 2, we present the results obtained with TA for
the CC and the thalamus respectively, when all 3 groups of
interest (AD, aMCI, and control) were compared. In Tables 3
and 4, we show the results for pair-wise comparison (AD-
control, aMCI-control, and aMCI-AD), also for the CC and
the thalamus, respectively. Only pairs of groups in which we
found differences are shown.

In Table 1, our study showed differences among the 3
groups (aMCI, AD, and controls) for the CC. More specifi-
cally, 6 (of 44) parameters showed differences in the 3-group
comparison for the CC. In particular, the difference variance
parameter showed differences for all distances considered

(P � .025), and the contrast parameter showed differences
between the groups for d � 1 and d � 2 (P � .5).

In Table 2, for the thalamus, different results were found
for the left and right sides. In the left side, the sum average was
the unique parameter that yielded significant differences (P �
.05) for all distances, giving 4/44 significant parameters. On
the other hand, in the right side, we found significant differ-
ences in 13/44 parameters, namely sum of squares (for d � 1,
2, 3, 4), difference variance (d � 2, 3, 4), contrast (d � 2, 3, 4),
sum variance (d � 3), and difference entropy (d � 2, 4).

In Table 3, in the pair-wise comparison for the CC, 14/44
parameters showed differences between AD and controls
(contrast and difference variance gave the largest results); and
4/44, between AD and aMCI (difference variance was the most
significant); but no differences were found between aMCI and
controls.

In Table 4 for the thalamus, 4/44 texture parameters
showed differences on the left side and 17/44 parameters
showed differences on the right side between AD and controls;
14/44 parameters showed differences on the right side between
aMCI and controls (but no parameters were significant for the
left side); and 4/44 parameters showed differences on the left
side between aMCI and AD (no parameters were significant
for the right side).

With regard to the statistical comparison between left and
right thalami of the control group, we did not find significant
differences for any of the texture parameters studied for any of
the pixel distances considered for the computation of the cor-
responding GLCMs. The smallest P values found were for the
distance d � 3 pixels and for the parameters sum entropy (P �
.39) and angular second moment (P � .38).

Figures 1 and 2 show boxplots, with examples of the distri-

Table 1: Significant texture parameters obtained for the CC in the
comparison among all groups (AD, aMCI and control)a

Distance Texture Parameter
1 Contrast, difference variance
2 Contrast, difference variance
3 Difference variance
4 Difference variance
aP value � .05.

Table 2: Significant texture parameters obtained for the thalamus
(left and right) in the comparison among all groups (AD, aMCI and
control)a

Side Distance Texture Parameter
Left 1, 2, 3, 4 Sum average
Right 1, 2, 3, 4 Sum of squares
Right 2, 3, 4 Contrast, difference variance
Right 3 Sum variance
Right 2, 4 Difference entropy
a P value � .05.

Table 3: Significant texture parameters obtained for the CC in the
pair-wise comparison (AD-control and aMCI-AD)a

Group
Pair Distance

Texture
Parameter

AD-control 1, 2, 3, 4 Contrast
AD-control 1, 2, 3, 4 Sum of squares
AD-control 1, 2, 3 Difference variance
AD-control 3, 4 Sum variance
AD-control 2 Difference entropy
aMCI-AD 1, 2, 3, 4 Difference variance
a P value � .05.

Table 4: Significant texture parameters obtained for the thalamus in
the pair-wise comparison (AD-control, aMCI-control, and aMCI-AD)a

Group Pair Side Distance Texture Parameter
AD-control Left 3 Contrast, difference variance
AD-control Left 4 Contrast, sum of squares
AD-control Right All Sum of squares, difference variance
AD-control Right 2, 3, 4 Contrast, difference entropy
AD-control Right 3, 4 Sum variance
AD-control Right 4 Sum entropy
aMCI-control Right 1 Angular second moment
aMCI-control Right 2, 4 Contrast, difference entropy
aMCI-control Right 2, 3, 4 Sum of squares, difference variance
aMCI-control Right 2 Inverse difference moment
aMCI-control Right 3, 4 Sum variance
aMCI-AD Left 1, 2, 3, 4 Sum average
a P value � .05.
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Fig 1. Boxplots for texture parameter-versus-subject groups for
the CC (top row) and thalamus (bottom row), for the comparison
among all the groups. X-axes show the studied groups, and
y-axes show the magnitude of the texture parameter. The left
column shows parameters that are differentiated well among
groups, and the right column shows parameters that are not
differentiated among groups. All plots correspond to distance
d � 1.

Fig 2. Boxplots for texture parameter-versus-subject groups
for the CC, for the pair-wise comparison between AD-control
(top row) and AD-aMCI (bottom row). X-axes show the
studied groups, and y-axes show the magnitude of the
texture parameter. The left column shows parameters that
are differentiated well among groups, and the right column
shows parameters that are not differentiated among groups.
All plots correspond to distance d � 1.
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bution of texture parameters-versus-subject groups, for the
comparison among all groups (Fig 1), and for the pair-wise
comparison (Fig 2). Figure 1 shows results for the CC and the
thalamus, and Fig 2 shows results only for the CC. The left
column of these figures shows parameters that were well dif-
ferentiated among groups, while the right column shows pa-
rameters that were not differentiated among groups. In both
figures, the boxplots correspond to distance d � 1.

In Fig 1 (top row), the difference variance parameter
showed good differentiation between the AD group and the
others, for the CC. Figure 2 also shows the difference variance
parameter as a good descriptor to differentiate between AD
versus controls and AD versus aMCI for the CC. On the other
hand, in these figures, the correlation and the angular second
moment parameters almost did not show any differences
among the groups.

On the other hand, Fig 1 (bottom row) shows that the sum
average parameter showed good differentiation among the
groups for the thalamus, while the contrast parameter did not
achieve significant differentiation for this structure.

Figure 3 shows sagittal maps of the contrast and difference
variance parameters computed for the whole section (instead
of the region of interest) for a patient with AD (left), a patient
with aMCI (middle), and a control subject (right). These maps
were obtained by selecting a small neighborhood (9 � 9 pix-
els) around each image pixel, computing the texture parame-
ter for that neighborhood, and then attributing the value of
this parameter to the pixel. Obviously, this is different from

calculating these parameters for the segmented regions of in-
terest, which are not rectangular and are much larger (the
thalamus regions of interest have approximately 120 –150 pix-
els and the CC regions of interest have approximately 350 –
400 pixels, against the 81 pixels of the considered neighbor-
hoods for the map calculations). Nevertheless, these maps give
an idea of texture variation along the brain, and more impor-
tant, they show that there are, indeed, texture differences
among the AD, aMCI, and control individuals. The patients
with AD and aMCI chosen were those who had the largest
values for these texture parameters. From Fig 3, we see that
both the contrast and the difference variance maps show clear
differences in the CC among these individuals.

Discussion
The application of TA techniques seeks mathematic parame-
ters that can differentiate normal and lesioned tissues. Some of
these parameters have an intuitive meaning (On-line Table);
however, others are more difficult to comprehend in tangible
terms. Nevertheless, all of these parameters are suitable for
characterizing the gray level distributions of the regions of
interest, which in turn underlie physical properties regarding
the imaged tissues. For the images used in this work, the phys-
ical property in question corresponds to the T1-weighted MR
imaging signal intensity, which, in turn, depends on the T1
constant of the tissue and on the local proton attenuation.34

In this work, we used 11 texture parameters extracted from
4 GLCMs for each region of interest. Although more texture

Fig 3. Maps of texture parameters computed by the
MaZda software. Top row: MR imaging of a patient with
AD (left), one with MCI (center), and a control subject
(right). The middle and bottom rows show contrast and
difference variance maps for these subjects respectively,
computed from a GLCM with distance d � 1 pixel and
direction � � 90°. Both parameter maps show a variation
in the CC gray level intensity for patients with AD and
aMCI; it is brighter in the middle of this structure and
darker at the sides. In patients with AD, the whole
structure is brighter than that in patients with aMCI. This
brightness variation does not occur for the control image.
Although calculation of these maps used smaller regions
than the segmented regions of interest used to compute
the texture parameters shown in Tables 1– 4 (see text),
these maps give an idea of texture variation along the
brain, showing that there are, indeed, texture differences
among the AD, aMCI, and control individuals.
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parameters can be extracted from a GLCM (the original arti-
cle10 presenting this technique proposed 14 parameters), the
TA software used here (MaZda program) computes only these
11 parameters. In the future, we intend to develop our own TA
software and implement the calculation of the remaining 3
parameters.

As previously mentioned, a few other studies19-23 have al-
ready addressed AD with TA techniques; however, the ap-
proaches used have been quite different from the one used
here. In the studies more similar to the present one, texture
parameters were computed for the whole brain: Both Freebor-
ough and Fox21 and Torabi et al22 used GLCMs to differentiate
between patients with AD and control subjects. Kaeriyama et
al20 used run-length matrices, also for patients with AD and
control subjects, and Kodama et al23 used GLCMs and run-
length matrices to differentiate among patients with AD, those
with Lewy bodies, and controls. All these studies found texture
differences between patients and controls. However, because
the brain has many structures that possess different textures,
we think that our method is more robust than the methods
described in those studies, because instead of analyzing the
texture of the brain as a homogeneous structure (which it is
not), we sought to select meaningful cerebral structures (CC
and thalamus) and analyze their textures separately.

The CC is the largest white matter fiber bundle in the hu-
man brain. It has been shown to be susceptible to atrophy in
AD, mainly as a correlate of wallerian degeneration of com-
missural nerve fibers of the neocortex.25,27 It is generally as-
sumed that there is a topographic arrangement of axons
within the CC, according to their origin, that could justify its
texture differences in healthy controls and patients with AD,
whose callosal atrophy might be restricted just to axons pro-
ceeding from atrophic temporal structures, for example, as
shown in a diffusion tensor study by Huang et al.35

In fact, our study found significant differences among the 3
groups for the CC (Table 1), in 6/44 texture parameters—
namely, the contrast (for distances 1 and 2) and difference
variance (for all distances) parameters. It is better to have
fewer significant parameters because in an ideal situation, we
would like to have a unique descriptor extracted from the im-
ages that could indicate the presence or absence of tissue alter-
ations. In this case, it seems that the difference variance pa-
rameter would be a candidate for this role.

In addition, our study also found differences in the pair-
wise comparison for the CC, but only for the AD versus con-
trols (14/44 significant parameters) and AD versus aMCI
(4/44 significant parameters). The fact that no differences
were found between aMCI and controls suggests that the al-
terations that occur in the CC for patients with aMCI are im-
perceptible when compared only with controls but are enough
to distinguish this group from the others in the 3-group
comparison.

The differences in the CC among the groups can actually be
visualized in the sample texture maps shown in Fig 3 for a
patient with AD (left), one with aMCI (middle), and a control
subject (right). Comparing the maps (middle and bottom
rows) with the original MR images (top row), we noticed a
central brighter area in the CC for the patient with AD and a
lesser bright (but quite visible) area for the patients with aMCI
for both parameters, which does not happen for the control,

whose maps are uniform in this area. TA is thus showing dif-
ferences among the 3 groups that are not noticeable in the
original MR images. The texture parameter maps are based on
mathematic operations performed among the pixels, and their
analysis differs from the usual clinical analysis for AD. In the
texture maps, bright means high values and dark means low
values of the parameter, and we are looking only for differ-
ences among those (and not necessarily bright or dark values).
In particular, the differentiation achieved for the patient with
aMCI may help in an early risk assessment of this pathology
evolving into AD.

Thalamic involvement in AD and aMCI pathology has
been increasingly described in MR imaging studies, and its
dysfunction may contribute to cognitive decline, particularly
memory performance (the most affected cognitive domain in
our patients). Moreover, Teipel et al36 hypothesized that tha-
lamic atrophy may have some prognostic value in the conver-
sion from aMCI to AD. The thalamus is composed of several
nuclei, which can be distinguished on the basis of their cyto-
architectonic features, as well as on the basis of the patterns of
connections they form with other cortical and subcortical ar-
eas.37 The nuclei in the anterior part of the thalamus interact
with the medial temporal structures; they receive input from
the hippocampus directly through the fornix and indirectly
through the mammillary bodies. Also, anterior and dorsome-
dial nuclei of the thalamus project back to the hippocampus
through the cingulum. Damage to these thalamic nuclei causes
both anterograde and retrograde episodic memory deficits38

and may have contributed to the poor memory performance
of our patients.

As previously mentioned, the 3-group comparison for the
thalamus gave different results for the left and right sides (Ta-
ble 2); 4/44 parameters were significant for the left side, and
13/44 parameters were significant for the right side. The num-
ber of significant texture parameters for the left and right sides
of the thalamus was also quite different in the pair-wise com-
parisons (Table 4). Many more parameters were found signif-
icant for the right side than for the left side, for both the com-
parison between AD and controls and aMCI and controls. On
the other hand, for the comparison between aMCI and AD, a
few parameters on the left side were significant. On the whole,
we noticed an asymmetry between the results found for the left
and right sides for the comparison between patients (both AD
and aMCI) and controls; it seems that the right alterations are
more apparent. On the other hand, the statistical comparison
performed with the thalami of control subjects did not detect
any asymmetry between the left and right sides, suggesting that
the asymmetry found in patients could be arising from the
pathologies in question. In a longitudinal VBM study, Baron
et al5 also found significant asymmetric right thalamic atrophy
during the 18-month follow-up period common to both MCI
converters and nonconverters to AD.

For the thalamus, TA found differences in the pair-wise
comparison between aMCI and controls, which did not hap-
pen for the CC.

Thus, thalamic TA results concur with those previously
quoted structural neuroimaging studies. These results proved
the technique to be effective in distinguishing AD and aMCI
from normal aging.

Because in this work we have analyzed multiple parameters
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(actually 44), it is statistically expected that some of them
could be significant due to random errors. The significance
level of 5% used in this work amounts to expecting that 44 �
0.05 or 2 parameters could possibly result in false-positives.
However, in our analyses, there were always �2 significant
texture parameters, which is an indication that some texture
difference indeed exists.

At this point, the whole analysis takes a long time (approx-
imately 3 days per subject), particularly due to the manual
segmentation of the brain structures, which is the bottleneck
of the process. Tools for semiautomatic (user-guided) seg-
mentation of brain structures are already available, which
would considerably speed up the analysis. However, the TA
software in this work (MaZda) uses an unknown format for
the segmented images, which makes segmentation outside this
software impractical. Future extensions of this work include
developing software for calculating texture parameters, to be
used in conjunction with the semiautomatic segmentation
tools mentioned.

To use TA in daily clinical practice, more data, from both
patients and controls, need to be collected and analyzed, to
build a texture model. Then, given a new patient with a suit-
able clinical evaluation, MR imaging would be performed, fol-
lowed by segmentation of the structures of interest and then
TA of these structures. These results would be compared with
the model to help in the diagnosis/prognosis of the disease.

Conclusions
This study presented results of the application of the technique
of TA to cerebral MR images of patients with AD and aMCI
and of normal-aging subjects, with the aim of evaluating
whether the technique can differentiate among those groups.
The texture parameters showed differences among the 3
groups for the CC and thalamus as well as between AD and
control and AD and aMCI subjects for the CC; and also among
AD and control, AD and aMCI, and aMCI and control sub-
jects for the thalamus. This finding suggests that the technique
is useful for the detection of regions affected by these kinds of
anomalies. Because standard visual analysis of this type of im-
age is generally unable to detect these differences, TA has the
potential to become a helpful tool in the diagnosis and under-
standing of these pathologies. A future extension of this work
would be to automate TA of the involved anatomic regions, to
make this analysis a fast and easy-to-use tool for neurologists.

References
1. Wilmo A, Jonsson L, Winblad B. An estimate of the worldwide prevalence and

direct costs of dementia in 2003. Dement Geriatr Cogn Disord 2006;21:175– 81
2. Cummings JL, Cole G. Alzheimer disease. JAMA 2002;18:2335–38
3. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment: beyond

controversies, towards a consensus—report of the International Working
Group on Mild Cognitive Impairment. J Intern Med 2004;256:240 – 46

4. Kelley BJ, Petersen RC. Alzheimer’s disease and mild cognitive impairment.
Neurologic Clinics 2007;25:577– 609

5. Fleisher AS, Sun S, Ward CP, et al. Volumetric MRI vs clinical predictors of
Alzheimer disease in mild cognitive impairment. Neurology 2008;70:191–99

6. Baron JC, Chetelat G, Desgranges B, et al. In vivo mapping of gray matter loss
with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage
2001;14:298 –309

7. Pennanen C, Testa C, Laakso MP, et al. A voxel based morphometry study on
mild cognitive impairment. J Neurol Neurosurg Psychiatry 2005;76:11–14

8. Jessen F, Gür O, Block W, et al. A multicenter (1)H-MRS study of the medial
temporal lobe in AD and MCI. Neurology 2009;72:1735– 40

9. Bozzali M, Falini A, Franceschi M, et al. White matter damage in Alzheimer’s
disease assessed in vivo using diffusion tensor magnetic resonance imaging.
J Neurol Neurosurg Psychiatry 2002;72:742– 46

10. Haralick RM. Statistical and structural approaches to texture. Proceedings of
the IEEE 1979;67:788 – 804

11. Dougherty ER, Lotufo RA. Hands-On Morphological Image Processing. Belling-
ham, Washington: SPIE Press; 2003

12. Castellano G, Bonilha L, Li LM, et al. Texture analysis in medical images. Clin
Radiol 2004;59:1061– 69

13. Besson P, Bernasconi N, Colliot O, et al. Surface-based texture and morpho-
logical analysis detects subtle cortical dysplasia. Med Image Comput Comput
Assist Interv 2008;11(pt 1):645–52

14. Georgiadis P, Cavouras D, Kalatzis I, et al. Enhancing the discrimination accu-
racy between metastases, gliomas and meningiomas on brain MRI by volu-
metric textural features and ensemble pattern recognition methods. Magn
Reson Imaging 2009;27:120 –30. Epub 2008 Jul 7

15. McLaren C, Chen W, Nie K, et al. Prediction of malignant breast lesions from
MRI features: a comparison of artificial network and logistic regression tech-
niques. Acad Radiol 2009;16:842–51. Epub 2009 May 5

16. Rachidi M, Breban S, Benhamou CL. The challenges of the bone micro-archi-
tecture. J Soc Biol 2008;202:265–73

17. Theocharakis P, Glotsos D, Kalatzis I, et al. Pattern recognition system for the
discrimination of multiple sclerosis from cerebral microangiopathy lesions
based on TA of magnetic resonance images. Magn Reson Imaging
2009;27:417–22

18. Zhang J, Tong L, Wang L, et al. Texture analysis of multiple sclerosis: a com-
parative study. Magn Reson Imaging 2008;26:1160 – 66

19. Sayeed A, Petrou M, Spyrou N, et al. Diagnostic features of Alzheimer’s disease
extracted from PET sinograms. Phys Med Biol 2002;47:137– 48

20. Kaeriyama T, Kodama N, Shimada T, et al. Application of run length matrix to
magnetic resonance imaging diagnosis of Alzheimer-type dementia [in Japa-
nese]. Nippon Hoshasen Gijutsu Gakkai Zasshi 2002;58:1502– 08

21. Freeborough P, Fox N. MR image TA applied to the diagnosis and tracking of
Alzheimer’s disease. IEEE Trans Med Imaging 1998;17:475–79

22. Torabi M, Ardekani RD, Fatemizadeh E. Discrimination between Alzheimer’s
disease and control group in MR-images based on TA using artificial neural
network. In: Proceedings of the 2006 International Conference on Biomedical and
Pharmaceutical Engineering, Singapore. December 11–14, 2006:79 – 83

23. Kodama N, Kawase Y, Okamoto K. Application of texture analysis to differen-
tiation of dementia with Lewy bodies from Alzheimer’s disease on magnetic
resonance images. In: Proceedings of the World Congress on Medical Physics and
Biomedical Engineering, Munich, Germany. September 13–18, 2009;14:1444 – 46

24. Braak H, Braak E. Alzheimer’s disease affects limbic nuclei of the thalamus.
Acta Neuropathol 1991;81:261– 68

25. Balthazar ML, Yasuda CL, Pereira FR, et al. Differences in gray and white mat-
ter atrophy in amnestic mild cognitive. Eur J Neurol 2008;16:468 –74

26. de Jong LW, van der Hiele K, Veer IM, et al. Strongly reduced volumes of
putamen and thalamus in Alzheimer’s disease: an MRI study. Brain
2008;131:3277– 85

27. Di Paola M, Luders E, Di Iulio F, et al. Callosal atrophy in mild cognitive
impairment and Alzheimer’s disease: different effects in different stages. Neu-
roimage 2010;49:141– 49. Epub 2009 Jul 28

28. Thomann PA, Wustenberg T, Pantel J, et al. Structural changes of the corpus
callosum in mild cognitive impairment and Alzheimer’s disease. Dement Geri-
atr Cogn Disord 2006;21:215–20

29. Morris JC. The clinical dementia rating (CDR): current version and scoring
rules. Neurology 1993;43:2412–14

30. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer’s
Disease: report of the NINCDS-ADRDA Work Group under the auspices of
Department of Health and Human Services Task Force on Alzheimer’s Dis-
ease. Neurology 1984;34:939 – 44
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