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REVIEW ARTICLE

Conebeam CT of the Head and Neck, Part 2:
Clinical Applications

A.C. Miracle
S.K. Mukherji

SUMMARY: Conebeam x-ray CT (CBCT) is being increasingly used for point-of-service head and neck
and dentomaxillofacial imaging. This technique provides relatively high isotropic spatial resolution of
osseous structures with a reduced radiation dose compared with conventional CT scans. In this
second installment in a 2-part review, the clinical applications in the dentomaxillofacial and head and
neck regions will be explored, with particular emphasis on diagnostic imaging of the sinuses, temporal
bone, and craniofacial structures. Several controversies surrounding the emergence of CBCT technol-
ogy will also be addressed.

Conebeam CT (CBCT) is an advancement in CT imaging
that has begun to emerge as a potentially low-dose cross-

sectional technique for visualizing bony structures in the head
and neck. The physical principles, image quality parameters,
and technical limitations relevant to CBCT imaging were dis-
cussed in Part 1 of this 2-part series. The second part presented
here will highlight the evidence related to CBCT applications
in head and neck as well as dentomaxillofacial imaging. Con-
troversial aspects of this technology will also be addressed,
including limitations in image quality and its often office-
based operational model.

CBCT was first adapted for potential clinical use in 1982 at
the Mayo Clinic Biodynamics Research Laboratory.1 Initial
interest focused primarily on applications in angiography in
which soft-tissue resolution could be sacrificed in favor of high
temporal and spatial-resolving capabilities. Since that time,
several CBCT systems have been developed for use both in the
interventional suite and for general applications in CT angiog-
raphy.2,3 Exploration of CBCT technologies for use in radia-
tion therapy guidance began in 1992,4,5 followed by integra-
tion of the first CBCT imaging system into the gantry of a
linear accelerator in 1999.6

The first CBCT system became commercially available for
dentomaxillofacial imaging in 2001 (NewTom QR DVT 9000;
Quantitative Radiology, Verona, Italy). Comparatively low
dosing requirements and a relatively compact design have also
led to intense interest in surgical planning and intraoperative
CBCT applications, particularly in the head and neck but also
in spinal, thoracic, abdominal, and orthopedic procedures.7-11

Diagnostic applications in CT mammography and head and
neck imaging are also under evaluation.12-14 The technical and
clinical considerations pertaining to CBCT imaging in many
of these applications have been the subjects of several recent
reviews.15-19 The recent review by Dörfler et al16 of the neu-
rointerventional applications of CBCT is of particular interest
to the field of neuroradiology.

The discussion below will focus on the diagnostic and
treatment-planning applications of CBCT in dentomaxillofa-

cial and head and neck imaging. Commercially available
CBCT systems for dentomaxillofacial imaging include the CB
MercuRay and CB Throne (Hitachi Medical, Kashiwi-shi,
Chiba-ken, Japan), 3D Accuitomo products (J. Morita Man-
ufacturing, Kyoto, Japan), and iCAT (Xoran Technologies,
Ann Arbor, Mich; and Imaging Sciences International, Hat-
field, Pa). Similar systems designed for point-of-service head
and neck imaging have also recently become available (Mini-
CAT, Xoran Technologies; 3D Accuitomo and 3D Accuitomo
170, J Morita Manufacturing; ILUMA Cone Beam CT,
IMTEC, Ardmore, Okla and GE Healthcare, Chalfont St.
Giles, UK).

Dentomaxillofacial Imaging
Advanced cross-sectional imaging techniques such as CT are
used in dentomaxillofacial imaging to solve complex diagnos-
tic and treatment-planning problems, such as those encoun-
tered in craniofacial fractures, endosseous dental-implant
planning, and orthodontics, among others. With the advent of
CBCT technology, cross-sectional imaging that had previ-
ously been outsourced to medical CT scanners has begun to
take place in dental offices.

Early dedicated CBCT scanners for dental use were charac-
terized by Mozzo et al20 and Arai et al21 in the late 1990s. Since
then, more commercial models have become available, incit-
ing research in many fields of dentistry and oral and maxillo-
facial surgery. To date, multiple ex vivo studies have attempted
to establish the ability of CBCT images to accurately repro-
duce the geometric dimensions of the maxillodental structures
and the mandible.22-25

A relatively low patient dose for dedicated dentomaxillofa-
cial scans is a potentially attractive feature of CBCT imaging.
The dosing characteristics of dentomaxillofacial scanners were
discussed in Part 1 of this series. An effective dose in the broad
range of 13– 498 �Sv can be expected, with most scans falling
between 30 and 80 �Sv, depending on exposure parameters
and the selected FOV size. In comparison, standard pan-
oramic radiography delivers �13.3 �Sv and multidetector CT
with a similar FOV delivers �860 �Sv.26,27 Image quality can
vary considerably with dose; images acquired with higher ra-
diation exposure often produce superior image quality.

The discussion below reviews potential CBCT applications
in the dentomaxillofacial regions. Most of this research re-
mains preliminary; further prospective and outcomes-based
research is required to make informed recommendations on
the appropriate use of CBCT in dentomaxillofacial imaging.
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Implantology
Cross-sectional imaging techniques can be an invaluable tool
during preoperative planning for complicated endosseous
dental implantation procedures.28 Conventional linear to-
mography and CT have traditionally been used in presurgical
imaging, though the former has overlain ghosting artifacts and
the latter has relatively high radiation exposure and cost.29

Practitioners have begun using office-based CBCT scan-
ners in preoperative imaging for implant procedures, capital-
izing on availability and low dosing requirements. A review by
Guerrero et al30 outlines the clinical and technical aspects of
CBCT, which have popularized this new technique. Prelimi-
nary evidence addresses the ability of CBCT images to charac-
terize mandibular and alveolar bone morphology, as well as to
visualize the maxillary sinuses, incisive canal, mandibular ca-
nal, and mental foramina, all structures particularly important
in surgical planning for dental implantation.29,31,32 Several
studies have described the 3D geometric accuracy of CBCT
imaging in the maxillodental and mandibular regions as
well.22-25 Examples of CBCT imaging studies for implant plan-
ning and visualization of the mandibular canal are presented
in Figures 1 and 2 respectively.

Craniofacial Fractures
Imaging of complex high-contrast bony structural pathology
such as craniofacial fractures is a logical application for CBCT.
Terakado et al33 reported a case series in 2000, which included

2 patients with facial trauma for whom CBCT was used to
characterize a mandibular head fracture, dental root fractures,
and the displacement of anterior maxillary teeth. Since that
time, several additional reports have extolled the low-dose
high-resolution properties of CBCT imaging in preoperative
characterization of mandibular and orbital floor frac-
tures.34-36 In orbital floor fractures, although CBCT can dem-
onstrate orbital content herniation, it lacks the contrast reso-
lution to differentiate the tissue composition of the herniated
materials.35

The intraoperative uses of C-arm CBCT systems have been
evaluated for fractures of the zygomaticomaxillary complex
(ZMC), demonstrating the feasibility of CBCT use in surgical
navigation, localization of bony fragments, and evaluation of
screw anchorage and plate fittings with low levels of metal
artifact.37,38 These results have been corroborated in a study of
postoperative patients with ZMC fractures, though investiga-
tors noted that poorly aerated ethmoidal air cells limit the
ability of CBCT to visualize the medial orbital wall.39 Low
bone density in older patients also reduced bony structural
definition in their series. Intraoperative efficacy has been eval-
uated in mandibular fracture fixation as well.40

Orthodontics
Cross-sectional imaging affords overlay-free visualization of
structural and anatomic relationships important for address-
ing many radiologic questions in orthodontics. The current

Fig 1. Noncontrast dentomaxillofacial CBCT scan (iCAT) of a patient with congenital absence of the maxillary lateral incisors (0.4-mm pixels, 120 kVp, 18.66 mA). A, Reconstructed panoramic
view of the maxilla demonstrates bilateral lateral incisor absence (arrows). B, Sequential parasagittal/oblique views through the maxillary alveolar bone demonstrate planned implant
locations (arrows).
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standard of care for overlay-free imaging in orthodontics is
conventional CT.41 Low-cost office-based CBCT imaging has
recently been explored for orthodontic applications, including
assessment of palatal bone thickness, skeletal growth patterns,
dental age estimation, upper airway evaluation, and visualiza-
tion of impacted teeth.42-47 Although preliminary results are
encouraging, established cross-sectional techniques such as
conventional CT provide superior image quality of dental and
surrounding structures for advanced orthodontic treatment
planning.41 Low dosing requirements appear to remain a ben-

efit of CBCT when compared with conventional CT, with a
routine orthodontic CBCT study delivering an effective dose
of �61.1 �Sv compared with 429.7 �Sv for multisection CT.48

Lateral cephalograms deliver 10.4 �Sv in comparison, though
without the benefit of 3D structural visualization.

Temporomandibular Joint
Morphologic changes of the temporomandibular joint (TMJ)
as depicted with conventional MR imaging, CT, and radio-
graphic imaging are often useful in diagnosing pathologic

Fig 2. Noncontrast dentomaxillofacial CBCT scan (iCAT) of a patient with an impacted left mandibular third molar (0.4-mm pixels, 120 kVp, 18.66 mA). A, Axial view through the mandible
demonstrates the impacted molar on the left side (arrowhead). B�D, Coronal (B and C) and sagittal (D) views through the mandibular body depict the proximity of the underlying mandibular
canal (arrows) to the impacted molar.

Fig 3. Noncontrast CBCT scan of a 56-year-old acquired with a sinus protocol (40 seconds, 600 frames, 0.4-mm pixels, 120 kVp, 48 mA). A, Axial section demonstrates right-sided deviation
of the nasal septum and mucosal thickening in the left nasal cavity. B, Coronal section redemonstrates mucosal thickening of the left nasal cavity. C, Left paramedian sagittal section.
D, Axial view of the ethmoid air cells and sphenoid sinus with mild opacification in the region of the right sphenoethmoidal recess.
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processes such as degenerative changes and ankylosis, joint
remodeling after diskectomy, malocclusion, and congenital
and developmental malformations.49 CBCT is a technique
that has recently inspired research in TMJ imaging, though
preliminary experiments have yet to translate into clinical
studies. Several cadaveric series have explored the use of TMJ
CBCT to assess periarticular bony defects, flattenings, osteo-
phytes, and sclerotic changes.50-53 Preliminary studies have
also directly compared CBCT with radiography, multidetector
row CT (MDCT), and linear tomography for detection of os-
seous abnormalities of the TMJ.52,53 Although early results are

promising, more research is needed before CBCT should be
used clinically to assess the TMJ. A recent systematic review by
Hussain et al54 suggests that axially corrected sagittal tomog-
raphy is still the method of choice in the detection of periar-
ticular erosions and osteophytes.

Endodontics
CBCT has been explored for applications in endodontics, in-
cluding periradicular surgical planning, assessment of peri-
apical pathology, and dentoalveolar trauma evaluation.55 The
diagnostic properties of CBCT at the root apices and perira-

Fig 4. Noncontrast CBCT scan of a 50-year-old acquired with a temporal bone protocol (40 seconds, 600 frames, 0.3-mm-pixels, 125 kVp, 50.85 mA). A, Coronal image of the normal right
temporal bone demonstrates the vestibulocochlear nerve, body and long limb of the incus, as well as the stapedial neck and crura in the fossa of the oval window. B, Axial section at
the level of the right mesotympanum demonstrates the head of the malleus, short limb of the incus, and stapedial crura, as well as the cochlear nerve, tensor tympani, and mastoid part
of the facial nerve VII. C, Coronal section through the left cochlea demonstrates the modiolus, tympanic part of facial nerve VII, tensor tympani, and malleus. D, Axial section through the
right mesotympanum at the level of the round window demonstrates the handle of the malleus, base of cochlea, and mastoid portion of the facial nerve VII.

Fig 5. Noncontrast CBCT scan of a 13-year-old boy acquired with a sinus protocol (40 seconds, 600 frames, 0.4-mm pixels, 120 kVp, 48 mA). A, Axial section at the level of the maxillary
sinus floor demonstrates a 1.0 � 0.7 � 1.0-cm oval mass in the alveolar process of the right maxilla (arrow). B, Axial image highlights the inferior extent of the lesion in A. C and D,
Coronal and sagittal images, respectively, of the lesion in A.
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dicular region have been reported in several studies.56-58 In
retrospective cohorts and case reports, CBCT has been sug-
gested as superior to periapical radiographs in the character-
ization of periapical lucent lesions, reliably demonstrating le-
sion proximity to the maxillary sinus, sinus membrane
involvement, and lesion location relative to the mandibular
canal.56-58 There may also eventually be a role for CBCT in
early detection of periapical disease, which could lead to better
endodontic treatment outcomes.55 Promising results have
been demonstrated in studies characterizing CBCT images for
endodontic surgical planning purposes as well.58,59

Periodontics
The first reported applications of CBCT in periodontology
were for diagnostic and treatment-outcome evaluations of
periodontitis.60 Ex vivo studies later characterized the ability
of CBCT to accurately reconstruct periodontal intrabony
and fenestration defects, dehiscences, and root furcation
involvements in comparison with radiography, MDCT, and
histologic measurements.61-65 CBCT 3D geometric accuracy
has been suggested to be equal to radiography and MDCT
but with better observer-rated image quality than MDCT as
well as superior periodontal-defect detection than radiogra-
phy.61,62,64 Although periodontal bony defects are well visual-
ized with CBCT, conventional radiography still affords higher
quality bony contrast and delineation of the lamina dura.63

CBCT ex vivo visualization of the periodontal ligament and
periodontal ligament space has been evaluated in comparison
with radiography with mixed results, a more recent study
suggesting that CBCT visualization is still inferior to that of
radiography.61,66

Head and Neck
As CBCT imaging systems have become more widely available,
interest in the intraoperative and diagnostic CBCT applica-
tions in the extracranial head and neck regions has intensified.
The reported high isotropic spatial resolution and relatively
low dose requirements of CBCT are characteristics that have
made it particularly attractive. In the head and neck region, a
premium is placed on discriminating fine anatomic detail in
territories where the vascular and bony structural anatomy is
particularly complex.8 Potential applications in sinus, tempo-
ral bone, and skull base imaging have been explored, as dis-
cussed below. Figures 3, 4, 5, and 6 depict head and neck CBCT
studies visualizing the paranasal sinuses; temporal bones;
maxillary sinus floor and alveolar process of the maxilla; and
orbital floors respectively.

Sinus Imaging/Frontal Recess
Comparatively low dosing requirements, high-quality bony
definition, and the compact design afforded by CBCT scan-
ners have made them attractive for office-based and intraop-
erative scanning of the paranasal sinuses.67,68 To date, there
have been few studies comparing image quality in paranasal
sinus CBCT scans with that in MDCT. Alspaugh et al69 did
directly compare the spatial resolution obtained with CBCT
scans of the paranasal sinuses with that of 16- and 64-section
MDCT scanners. They concluded that 12 line pairs per centi-
meter (lp/cm) isotropic spatial resolution could be obtained
with an effective dose of 0.17 mSv compared with a dose re-
quirement of 0.87 mSv for 11-lp/cm spatial resolution in a
64-section MDCT scanner.

To a large degree, evidence supporting sinus CBCT imag-
ing has emerged from exploration of intraoperative CBCT ap-
plications in endoscopic sinus surgery (ESS). In preclinical
cadaver studies, Rafferty et al67 provided proof of principle for
the application of C-arm CBCT imaging to ESS, concluding
that both spatial and soft-tissue contrast was sufficient to aid
surgical navigation in the frontal recess. More recent clinical
studies have also provided qualitative evidence that intraoper-
ative CBCT provides high-quality definition of bony anatomy,
which can lead to refinement of surgical strategy.70,71 In a se-
ries of 25 patients undergoing ESS, Batra et al71 found that
residual bony partitions and stent locations could be visual-
ized with intraoperative CBCT scans, leading to surgical revi-
sion. CBCT has also been used recently to evaluate contrast
delivery during sinus irrigation after ESS.72

Preliminary evidence suggests that CBCT may be suited for
specific imaging tasks in the context of intraoperative and
perioperative bony structural evaluations, enabling low-dose
assessment of individualized paranasal sinus anatomy, surgi-
cal outcomes, and stent placements. To our knowledge, there
is no current evidence, however, supporting CBCT use in gen-
eral diagnostic sinus imaging owing to lack of soft-tissue con-
trast resolution. Furthermore, significant complications of
ESS, including encephalocele, subarachnoid hemorrhage, and
meningitis are unlikely to be evaluated adequately with cur-
rent CBCT image quality.73,74

Temporal Bone/Lateral Skull Base
The temporal bone was one of the earliest targets for head and
neck CBCT imaging. Specific applications have been explored,
including postprocedural middle and inner ear implant eval-
uation, visualization of the reuniting duct in the inner ear, and
intraoperative temporal bone surgical guidance.8,75,76

Fig 6. Noncontrast CBCT scan of a 45-year-old (40 seconds, 600 frames, 0.4-mm pixels, 120 kVp, 48 mA) obtained after repair of a right orbital floor fracture. A, Axial image demonstrates
a metal fixture implanted over the right orbital floor. B, Metallic implant is seen in the sagittal section.
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Preliminary evaluation of an experimental CBCT system
for general temporal bone diagnostic imaging was performed
by Gupta et al12 on a small series of partially manipulated
cadaveric specimens. They found that observer scores of the
quality of structural visualization with CBCT were signifi-
cantly higher compared with scores for MDCT. Particularly
well-visualized structures included the ossicular chain, bony
labyrinth of the inner ear, internal cochlear anatomy, and the
facial nerve. They also noted reduced metal artifacts with co-
chlear implant imaging as well as improved detection of small
laser-induced lesions in the ossicular chain. Gupta et al suggest
that lack of soft-tissue contrast in their evaluations did not
interfere with diagnostic accuracy due to the abundance of
high-contrast structures housed in the temporal bone and the
positive effect of higher spatial resolution on resolving some
low-contrast structures such as the facial nerve.

Peltonen et al14 compared a commercially available CBCT
scanner with MDCT in a study on unoperated temporal bone
specimens by using a modified Likert scale (scored by 2 otolo-
gists and 1 radiologist) to assess visualization of important
structures in the lateral skull base. They concluded that CBCT
was at least as accurate as MDCT in defining surgically rele-
vant middle ear structures. The inner ear was incompletely
visualized with CBCT in their study.

Perhaps the most well-studied use of temporal bone CBCT
is for the evaluation of middle and inner ear implants. Early
preclinical studies in temporal bone specimens fitted with co-
chlear implants demonstrated that an adapted CT angiogra-
phy CBCT system could noninvasively depict the electrode-
modiolus relationship postimplantation.77,78 These results
were later corroborated in another cadaver study comparing
single- and multisection CT with CBCT.79 When compared
with single- or multisection CT, a reduction in metal artifacts
was observed with CBCT, which allowed more precise deter-
mination of electrode-array positioning within the scala tym-
pani or scala vestibuli.79 Reduced metal artifacts with implant
imaging using CBCT compared with conventional CT were
also demonstrated by Offergeld et al80 in a study evaluating
middle ear implants in postsurgical temporal bone specimens.

Preclinical studies have been followed by studies of patients
with inner and middle ear implants, suggesting that the com-
bination of high spatial resolution and reduced metal artifacts
with CBCT imaging may facilitate the postsurgical evaluation
of reconstructed middle and inner ears.75,81 A recent study has
also explored the utility of CBCT in evaluating progressive
hearing loss. Dalchow et al82 submitted 25 patients with audi-
ometry-confirmed conductive hearing loss to preoperative
CBCT and concluded that CBCT could be accurate both in
predicting the continuity of the ossicular chain and in detect-
ing ossicular erosions.

Multiple commercial CBCT systems have temporal
bone�acquisition protocols. The miniCAT acquires temporal
bone images at 125 kilovolt (peak) (kVp) and 58.8 mA with a
20-second scanning time using a sharp kernel (manufacturer’s
data). This protocol delivers 4.62 and 4.18 mGy at the center
and periphery, respectively, of a 100-mm ion chamber, achiev-
ing spatial resolution in the range of 14 –16 lp/cm (manufac-
turer’s data). In their study of limited-FOV temporal bone
imaging described above, Peltonen et al14 noted a 60-fold ef-
fective dose reduction with CBCT compared with MDCT,

though they attributed much of this dramatic reduction to
significantly smaller FOVs and shorter scanning times for
their CBCT images. They noted that low-dose MDCT settings
can acquire images with effective doses like those in CBCT if
the FOVs and scanning times are, in fact, comparable with
those of CBCT.14

These data suggest that CBCT might be useful for select
imaging tasks in temporal bone imaging, including evaluation
of inner and middle ear implant positioning, as well as defini-
tion of high-contrast postsurgical change and structural anat-
omy within the lateral skull base. Possible applications in eval-
uation of bony pathology, such as ossicular chain erosions,
may also be emerging. Currently, further research is required
to characterize the ability of CBCT to define temporal bone
structures and bony pathology reliably, especially given the
technologic and scan-parameter variability of commercial
CBCT scanners. Lack of soft-tissue contrast resolution also
continues to limit the use of CBCT in general diagnostic im-
aging of the temporal bone.

Skull Base
The particularly complex bony and neurovascular anatomy of
the skull base makes it an attractive target for high-spatial-
resolution imaging. Current practices in oncologic imaging of
the skull base rely on MDCT and MR imaging for combined
osseous and soft-tissue definitions.83 Several preclinical re-
ports have begun to explore the potential uses of CBCT during
surgeries at the skull base,7,84,85 suggesting high 3D localiza-
tion accuracy and low target-registration error with effective
doses in the range of 0.1– 0.35 mSv. The xCAT intraoperative
CBCT scanner (Xoran Technologies), a cousin of the MiniCat,
has been evaluated in clinical scenarios at the skull base as well,
with favorable preliminary results.71,86

Controversies
As with any emerging imaging technology, use of CBCT scan-
ners has been the subject of criticism as well as acclaim. The
technology itself is limited by lack of user experience and what
is currently a relatively small body of related literature. The
point-of-service operational model that dominates diagnostic
head and neck CBCT imaging practices has also drawn criti-
cism. Additionally, the ACR Practice Guideline for CT of the
head and neck recommends that all imaging studies be evalu-
ated with bone and soft-tissue algorithms.87 Because of the low
radiation dose, CBCT can only provide bony detail and is un-
able to provide images of the soft tissues.

At our institution, CBCT scanning of the extracranial head
and neck is performed in both a clinical and research capacity
primarily for sinus, maxillofacial, and occasional temporal
bone imaging. Research on this technology is still preliminary,
without prospective studies that convincingly demonstrate its
benefit compared with conventional CT.

Both in medical and oral and maxillofacial imaging in den-
tistry, CBCT has been largely adopted as an office-based ser-
vice. This is a usage model purported to expedite patient diag-
nosis and treatment while simultaneously reducing costs,
providing 1-stop management with fewer billed visits and no
radiologist consultation fees. Point-of-service imaging and
other self-referral services, however, have been widely criti-
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cized for encouraging overuse and directly inflating medical
costs.

The belief that financial incentives undermine the clinical
decision-making process has been the basis for federal legisla-
tion limiting Medicare payments for self-referral services (so-
called “Stark laws”). Regulatory checks on the operation of
imaging technologies are present in many states in the form
of Certificates of Need (CONs), which require documenta-
tion of sufficient community demand before a technology can
be certified to be operated at a particular facility. This theoret-
ically prevents excess capacity of medical equipment and pre-
vents cost inflation. In states with CON laws, CBCT scanners
are often treated like conventional CT scanners and are subject
to the same scanning-volume requirements regulating the ac-
quisition and operation of conventional CT scanners. The CT
allowance in a given community is typically filled by conven-
tional scanners, making it difficult to operate a CBCT machine
in states with CON laws.

The advent of CBCT technologies has also fueled the con-
troversy surrounding office-based imaging, which is usually
performed and interpreted by nonradiologists often without
the accreditation, training, or licensure afforded by the radi-
ology community. A recent position paper by the American
Academy of Oral and Maxillofacial Radiology addressed this
issue, emphasizing the role of the practitioner in obtaining and
interpreting CBCT images. It highlights the practitioner’s re-
sponsibility for understanding CBCT operating parameters,
reviewing the entire exposed tissue volume, and addressing all
radiologic findings irrespective of their association with the
scanning indication.88

Conclusions
CBCT is an emerging CT technology, which has potential ap-
plications for imaging of high-contrast structures in the head
and neck as well as dentomaxillofacial regions. Preliminary
research suggests that high-spatial-resolution images can be
obtained with comparatively low patient dose. To date, the
most researched applications for head and neck CBCT are in
sinus, middle and inner ear implant, and dentomaxillofacial
imaging. This technology is not without controversy, and fur-
ther research is required to establish informed recommenda-
tions about its appropriate use in a clinical setting.
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