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TECHNICAL NOTE

Spin-Echo Echo-Planar Perfusion MR Imaging in
the Differential Diagnosis of Solitary Enhancing
Brain Lesions: Distinguishing Solitary Metastases
from Primary Glioma

G.S. Young
K. Setayesh

SUMMARY: Unlike the more widely reported gradient-echo echo-planar perfusion-weighted imaging
(EPI-PWI) technique, spin-echo (SE) EPI relative cerebral blood volume maps select for blood volume
in microvessels �8 �m in diameter. This first report of SE-EPI PWI for distinguishing brain metastasis
from high-grade glioma demonstrated 88% sensitivity and 72% specificity in 83 patients. We discuss
differences in microvessel architecture between high-grade glioma and brain metastasis that may
explain the surprising success of SE-EPI in this application and may deserve further investigation.

Distinction of brain metastasis from high-grade glioma by
MR imaging remains an important unsolved clinical

problem. Percentage recovery analysis of time-intensity
curves from gradient-echo echo-planar (GE-EPI) dynamic
susceptibility contrast perfusion-weighted imaging (PWI)1

has been proposed to distinguish these tumor types by assess-
ing increased capillary permeability in brain metastasis, but to
our knowledge, no published report yet documents the accu-
racy of this method. Reports from the pathology literature
suggest that in addition to permeability, brain metastasis and
high-grade glioma neovessels differ substantially in vascular
architecture,2-7 and in particular, metastases may contain a
substantially larger proportion of intermediate-sized dysplas-
tic vessels up to 70 �m in diameter.8-12 Recent literature dem-
onstrates that spin-echo EPI (SE-EPI) PWI has a substantially
different vessel-size sensitivity profile from GE-EPI PWI.13-15

Because SE-EPI PWI relative cerebral blood volume (rCBV)
maps reflect nearly exclusively the blood volume of microves-
sels �8 �m in diameter, in contrast to the admixture of mi-
crovessels and larger vessels assessed with GE-EPI, we hypoth-
esized that SE-EPI rCBV maps would allow reliable distinction
of brain metastasis from high-grade glioma. To our knowl-
edge, this is the first report using SE-EPI PWI to make this
distinction.

Technique
Forty-three subjects with high-grade glioma (20 cases of glioblastoma

multiforme, 14 anaplastic astrocytomas, 7 anaplastic oligoastrocyto-

mas, and 2 unspecified high-grade gliomas) and 40 patients with

brain metastasis (2 sarcomas; 38 carcinomas, including 20 lung, 5

melanoma, 1 basal cell, 4 breast, 1 esophageal, 2 colorectal, 1 prostate;

and 4 adenocarcinomas of unknown primary) were included chrono-

logically from our institutional data base. Ninety-eight percent (42) of

patients with high-grade glioma and 68% (27) of patients with brain

metastasis had received previous chemotherapy; 63% (27) of patients

with high-grade glioma and 85% of patients with metastasis (34) had

received radiation (Table 1). Following institutional protocol, SE-EPI

PWI (TE � 80 ms, TR � 1900 –2216.7 ms, section thickness � 10

mm, matrix � 1282–2562) was performed by using a 4-mL/s bolus

injection of 30-mL double-dose gadopentetate dimeglumine (Mag-

nevist; Bayer HealthCare Pharmaceuticals, Wayne, NJ) (0.15– 0.3

mmol/kg depending on body weight) and was coregistered with de-

layed postgadolinium T1-weighted imaging. Imaging was performed

on 1.5T or 3T commercial MR imaging scanners (GE Healthcare,

Milwaukee, Wis), and PWI data were processed by using a perfusion-

processing software package (GADW 4.3 FuncTool software, GE

Healthcare), which creates color rCBV maps by calculating the

change in transverse relaxivity (R2) from signal-intensity measure-

ments, integrates the area under the relaxivity curve and corrects for

TE, according to the following standard formula:
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Following previously published “hot spot” methods, we selected a

roughly 100-mm2 region of interest (ROI) within the region of max-

imal rCBV and recorded the average rCBV within the ROI as the

rCBVmax.16,17 We calculated a normalized rCBV (nCBV) by dividing

rCBVmax by the rCBV of an equivalent ROI in the contralateral nor-

mal-appearing white matter16 and performed percentage recovery

analysis in the same ROI according to previously reported GE-EPI

techniques.1

Results
The average nCBV within enhancing high-grade glioma was
1.53 � 0.79 (0.59 – 4.05) compared with 0.82 � 0.40 for brain
metastasis (0.48 –2.12), and differences between nCBV aver-
ages and ranges for the 2 groups were significant (P � .05) (Fig
1C). Sensitivity and specificity for detection of brain metasta-
sis were 95% and 51%, respectively, by using an nCBV thresh-
old of 1.3; and 36% and 93%, by using a 0.7 threshold. The
optimal threshold occurred at 1.0, where sensitivity and spec-
ificity were 88% and 72% (Table 2).

Percentage recovery analysis yielded average signal-inten-
sity recoveries of 0.86 for high-grade glioma and 0.75 for brain
metastasis (P � .05). Percentage recovery analysis sensitivity
and specificity to distinguish brain metastasis from high-grade
glioma were 18% and 93% by using a previously reported1

signal-intensity recovery threshold of 0.66. Optimal accuracy,
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obtained by using a signal-intensity recovery threshold of 0.85,
yielded a sensitivity and specificity of 84% and 48% (Table 2).

Discussion
In this retrospective series, SE-EPI-derived rCBV maps al-
lowed reliable distinction of brain metastasis from high-
grade glioma and were superior to percentage recovery
analysis for distinguishing brain metastasis from high-
grade glioma by using SE-EPI (Fig 1). Because of the limi-
tations regarding the retrospective design of this initial re-
port, further study is required before this finding can be
applied clinically. Most important, although both groups
received radiation and chemotherapy, differences in treat-
ment response between the groups could conceivably con-
tribute to the differences observed.

Although definitive testing of our hypothesis that the

success of SE-EPI is related to differences in vessel-size dis-
tribution between brain metastasis and high-grade glioma
is beyond the scope of this report, a number of limitations
of the current data deserve consideration in the design of
future studies. First, as our percentage recovery analysis
demonstrates, there is a significant difference between the
brain metastasis and high-grade glioma groups in mi-
crovessel permeability. Future studies designed to investi-
gate whether the observed effect is actually related to vessel-
size differences between brain metastasis and high-grade
glioma will require more rigorous correction for T1 short-
ening effects due to first-pass capillary leak.18 Additionally,
the use of interleaved GE-SE vessel-size imaging5,6 may be
of interest. Finally, because of the paucity of direct analyses
of metastatic vessel-size distribution in the pathology liter-
ature, correlation with microscopic imaging would be
valuable.

Conclusion
SE-EPI-derived rCBV maps promise to assist in accurate preop-
erative distinction of brain metastasis from high-grade glioma. If
more rigorous analysis in treatment-naı̈ve patients and prospec-
tive investigation support the preliminary findings presented
here, SE-EPI PWI may prove an important clinical tool.
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Table 1: Patient Demographics

Age Sex
Previous

Chemotherapy
Previous

Radiotherapy
Glioma 49.9 � 11.21 21 F/22 M 98% (20 F/22 M) 63% (6 F/10 M)
Metastases 56.5 � 11.60 18 F/22 M 68% (6 F/7 M) 85% (2 F/4 M)
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Note:—F indicates female; M, male.

Table 2: Diagnostic Accuracy of SE-EPI nCBV vs. Percent Recovery
Using Optimal Thresholds of nCBV � 1.0 and % recovery � 66%

nCBV
Percentage

Recovery
Glioma 1.52 � 0.78 0.85 � 0.25
Metastases 0.82 � 0.39 0.75 � 0.15
Sensitivity 0.87 0.18
Specificity 0.72 0.93

Note:—nCBV indicates normalized cerebral blood volume.
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