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Review Article

Newer Sequences for Spinal MR Imaging:
Smorgasbord or Succotash of Acronyms?

Jeffrey S. Ross

With the tremendous technical advances in MR im-
aging of the brain, such as perfusion, diffusion, and
blood oxygenation level-dependent (BOLD) func-
tional imaging, and contrast-enhanced MR angi-
ography, the continued advances in MR imaging of
the spine unfortunately may be overlooked. Nev-
ertheless, despite being somewhat overshadowed
by their flashier cephalad cousins, significant ad-
vances have been made in sequence design and im-
plementation that will directly impact the ease and
confidence of spinal disease interpretation.

In the performance of any MR examination, ma-
jor decisions include selection of the appropriate
coil, imaging plane, slice thickness, imaging ma-
trix, number of excitations, and pulse-sequence pa-
rameters. These choices will be influenced by the
anatomic area to be studied, the desired field of
view (FOV), spatial resolution, and contrast needs.
The goal is to provide a voxel size that provides
adequate yet small enough signal-to-noise (S/N) ra-
tios for contrast resolution that provide the neces-
sary spatial resolution. From a minimalist stand-
point, what is desired is enough contrast to noise
(C/N) in the shortest imaging time to provide di-
agnostic accuracy. This should be in a form that is
quick and easy to interpret, and eliminates tedious
multiple imaging manipulation and off-line
processing.

Many novel MR imaging techniques have been
developed with one of two driving forces behind
them—increased speed of acquisition or improved
lesion detection. Fortunately, a convergence of
these forces has also occurred, allowing for current
sequences with high C/N and short examination
times.

A myriad of choices are available for spine im-
aging, often with a bewildering array of names, ac-
ronyms, and parameters. Even more choices are po-
tentially available, but have shown little clinical
use. This review will focus on some new sequences
that might have real clinical impact on spinal im-
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aging, as well as new applications of some older
techniques. First, a few disclaimers: this review is
necessarily limited, and I do not presume to cover
every conceivable pulse sequence. Cord and CSF
motion studies will not be covered, and peripheral
nerve evaluations such as the lumbar and cervical
plexi have been reviewed recently (1, 2). Second,
the majority of sequences discussed were obtained
at mid and high field (1–1.5 T); therefore, I cannot
attest to their usefulness at lower field strength.
Thirdly, and as is often the case with rapidly chang-
ing technology, the sequences may be quickly put
into clinical use without much support in the sci-
entific literature. Existing literature tends to be pre-
liminary, and reports findings in few patients. No
apologies are offered for potentially sending the in-
terested and highly motivated reader down an ul-
timately useless sequence road.

Techniques
A brief overview of gradient echo (GE), fast spin echo

(FSE), and diffusion sequences follows, with the clinical ap-
plications of various newer sequences provided in the second
portion.

Gradient Echo

Gradient echo (GE) imaging does not use a 1808 pulse to
achieve the echo. This gradient-driven echo allows for rapid
imaging with very short repetition time (TR). Intrinsic to good
image quality in GE imaging is the choice of flip angle, which
has optimal values for specific TRs and tissue types, the Ernst
angle (the longer the T1 of the tissue, the smaller the best flip
angle). There are two types of GE imaging; spoiled and steady-
state. Spoiled sequences (fast low-angle shot [FLASH] and
spoiled gradient-recalled acquisition in steady state [GRASS])
destroy the residual transverse magnetization after each alpha
pulse. In steady-state sequences (fast-imaging steady preces-
sion [FISP], steady-state free precession [SSFP], and GRASS),
this transverse magnetization is maintained and stabilizes after
a few pulses. For tissue with a short T2 (e.g., fat, muscle), or
sequences requiring long TR, the spoiled and steady-state se-
quences look the same. If the T2 of interest is long (e.g., CSF),
then the steady-state sequence will give the familiar CSF mye-
logram effect. Flip angle is a powerful modifier of GE contrast.
Spoiled GE sequences will be more T1-weighted with higher
flip angles approaching 908. For steady-state sequences where
the TR is shorter than the T2, tissues with long T1 and T2 will
show preferentially increased signal with increasing flip angle.
Spin-density images can be obtained with a GE technique with
short TR if a small flip angle is used. T2-like contrast (T2*)
can be obtained with increasing echo time (TE), as with con-
ventional SE imaging.
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FIG 1. EPI diffusion-sequence structure. The 908 and 1808 RF
pulses are followed by a bipolar, trapezoidal frequency encode
gradient (Gx) for rapid collection of multiple echos. DWI is ap-
plied by symmetrical gradients along a frequency-encoded direc-
tion (black rectangles). Subsequent sequence acquisitions would
apply diffusion weighting along phase (Gy) and slice-select (Gz)
directions.

Fast Spin Echo (FSE)

The next branch on an evolving tree of fast imaging is rapid
acquisition relaxation enhancement (RARE). In conventional SE
techniques, one Ky line (phase-encoding line) is obtained for
each 90–1808 pulse pair. A 256 x 256 matrix would require 256
such pulses. FSE techniques are based on a modification of the
original RARE techniques. FSE acquires all Ky lines after one
908 pulse, with the number of 1808 pulses equal to the total
number of Ky lines. If some portions (or segments) of all the
Ky lines are obtained after a 908 pulse by using multiple 1808
pulses, then the sequence is hybrid RARE, also called FSE, or
turbo SE. Many excellent reviews of FSE are available (3–5).
Three-dimensional (3D) versions of FSE are available, but have
not been widely used in spinal imaging (6–8).

In routine SE imaging, the image contrast is controlled by
the TR and the TE. New parameters were added with FSE,
such as echo train length (ETL) and echo spacing, that can be
manipulated to alter image contrast. New artifacts and appear-
ances are also added by these techniques, such as T2 filtering
(image blurring), bright fat, and diminished sensitivity to sus-
ceptibility effects. Because multiple echos are obtained at dif-
ferent TEs in the FSE sequence, the overall image has not one
true TE, but an effective TE. What then determines the image
appearance? A fundamental concept necessary to grasp the
power and sophistication of these sequences is k-space. The
method by which k-space is sampled will determine the ap-
pearance and artifacts of the final image. Think of k-space as
a ‘‘box’’ that must be filled with data to get an image, and this
box initially exists in the time domain. The Fourier transform
takes this time domain data and converts it to the spatial do-
main; the image that we view. Where the data is in the k-space
box determines image contrast. The central aspect of the box
(low spatial frequencies) determines image contrast. These low
spatial frequencies are generated with the low-amplitude
phase-encoding gradients. The peripheral portions of k-space
determine resolution (high spatial frequencies). These are gen-
erated with the higher amplitude phase-encoding gradients.
The overall appearance of the image is heavily weighted by
the relatively small amount of data collected from central k-
space. In the example above, if the low spatial frequencies are
collected around 80 ms, then that is the effective TE.

Longer echo trains and shorter echo spacing have been
shown to improve CSF/disk contrast and cord differentiation.
This is in part related to the multiple 1808 refocusing pulses
that minimize CSF motion effects, and the edge enhancement
that occurs with collection of the low spatial frequencies late
in the echo train (5–9). The temptation to have a long-echo
train for the tremendous time it saves must be weighed against
the disadvantages of increased T2 decay that blurs images, and
a heavily T2-weighted sequence that may decrease lesion con-
trast (10). Frequency-selective fat saturation may be added to
the FSE sequence to diminish the annoyance of the high-sig-
nal-intensity fat and chemical shift artifact. The benefit of the
fat-saturation pulse will decrease as the TE is lengthened; the
fat signal will diminish regardless. On the downside, the fat-
saturation pulse will slightly increase the energy deposited
within the patient. Also, because of the time necessary to im-
plement the fat-saturation pulse, the sequence time is neces-
sarily increased. Sequence time may be kept constant by col-
lecting a decreased number of slices.

Diffusion

MR diffusion-weighted imaging (DWI) reveals the random
molecular motion of water (Brownian motion), and was de-
fined as intravoxel incoherent motion by Le Bihan et al (11–
13). In biological systems, free diffusion is restricted by phys-
ical barriers (cell membranes) and chemical interactions, and
is anisotropic. Differences in restricted diffusion-to-water pro-
portions give information about the physical and physiologic
state of the brain and the spinal cord. The major principle of
the DWI pulse sequence is the addition of a pair of diffusion-
sensitized gradient pulses to a standard MR sequence (Fig 1).

This causes dephasing of spins (signal loss) of water that is
rapidly diffusing along the direction of the applied gradient.
Normal diffusion of water, therefore, results in signal loss, and
diminished or restricted diffusion occurring in pathologic states
results in increased signal on the raw images. Apparent dif-
fusion coefficient (ADC) maps are plotted by images generated
from sequences repeated with higher diffusion gradients. On
the ADC maps, faster diffusion is increased in signal, and
slowed diffusion is lower in signal.

Half Fourier and Data Synthesis

Many relatively routine pre- and postprocessing imaging
techniques have been tailored for the commercial user to allow
straightforward applications. One simple example would be
obtaining interleaved slices as two separate sequences strung
together. A similar example is the three-dimensional construc-
tive interference in steady state (3D CISS) sequence where the
two phase-alternated sequences are merged together to reduce
banding artifacts. It behooves the imager to recognize these
types of manipulations, as they may take the data one more
step from the actual condition of the patient, and may introduce
new artifacts or appearances. Other techniques are available,
and may be just a click of the mouse away on the image setup
screen. These techniques either synthesize, share, or create
data. A common example among these latter techniques is half
Fourier and interpolation.

Half Fourier should really be called ‘‘slightly more than half
Fourier’’; the technique uses all the negative phase-encoded
data, and the lowest amplitude positive phase-encoded data to
fill the image matrix (Fig 2). The high-amplitude positive data
is synthesized from the negative data. This technique works
because the raw data is symmetrical (Hermitian symmetry).
Because only a portion of the Ky lines are being collected in
real time, this technique can dramatically reduce imaging
times, particularly when applied with FSE. One sequence used
to reduce the artifacts from spinal metal implants uses an FSE
technique with half Fourier (HASTE) (14, 15). Half Fourier
has also been used to reduce scan time in 3D FSE acquisitions
for brain applications, but has not been applied to the spine
(16).

Another manipulation technique that has much wider appli-
cations for sequences beyond the spine is interpolation, also
very appropriately called ‘‘zero fill’’ (17). This technique cre-
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FIG 2. Half Fourier schematic.
Slightly more than half of the data can
be collected and used to ‘‘fill in’’ the
remainder of k-space because the
data is assumed to be symmetrical.
This partial data acquisition shortens
imaging time.

FIG 3. Interpolation schematic. Ma-
trix is expanded by addition of ‘‘place
holder’’ data, allowing reconstruction,
for example, of a 512 matrix from a
256 data set. Appearance of image
will be filtered due to more heavy
weighting from central k-space data.

FIG 4. 3D GE with slice interpolation (36/15/1). Three contiguous slices reconstructed at 1.5 mm and acquired at 3 mm with slice inter-
polation. The advantage is that neural foramina are encompassed by multiple images with very-thin-slice reconstruction.

ates data to fill out the imaging matrix, using the image con-
trast that is primarily in central k-space to best advantage. Be-
cause image contrast is so dependent upon the central k-space
data, adding data (zeros) to the periphery of k-space allows
reconstruction of a 512 x 512 matrix with the time of a 256 x
256 acquisition while maintaining the overall image contrast
(Fig 3). A similar technique can be used in the slice-select
direction to decrease slice thickness (Fig 4). Nothing is free,
so this technique does introduce a low-pass filter effect due to
the weighting of real data from central k-space. The more one
attempts to improve resolution with this technique without in-
creasing imaging time, the more filtered the final image
becomes.

Spinal Cord Abnormalities
FSE, blemishes and all, has become the de facto

gold standard for spinal sagittal T2 and spin-den-
sity weighted imaging (18–22). The axial plain is
considerably more challenging. My current choice
for routine intra- and extradural disease for the cer-
vical spine is an axial 3D low-flip angle GE se-
quence, reserving the two-dimensional (2D) GE se-
quence for patients with too much motion artifact

on the 3D sequence. We do not routinely use a 3D
T2-weighted FSE sequence for cervical degenera-
tive disease. For the thoracic spine, an axial 2D GE
sequence is acceptable. FSE techniques are more
difficult to use in the cervical and thoracic spine
because of CSF pulsation artifacts. In the lumbar
spine, an axial T2-weighted FSE sequence is opti-
mal because CSF pulsation artifact is not a signif-
icant problem. Because T2-weighted FSE is a stan-
dard technique, it will not be discussed other than
in comparison to the newer sequences.

Fast Fluid-Attenuated Inversion Recovery
(FLAIR)

For cord disease, the primary sequence goal is
contrast, with resolution assuming much less im-
portance. Fast fluid-attenuated inversion recovery
(FLAIR) is an SE sequence with a long inversion
time (TI) that suppresses the signal from CSF (Fig
5). This pulse, coupled with a long TR/TE, gives
the benefits of a T2-weighted image without the
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FIG 5. Fast FLAIR sequence structure. Typical FSE sequence
structure of multiple 1808 pulses is modified by addition of a 1808
inversion pulse, followed by a delay time until the alpha pulse
(inversion time or TI). CSF is suppressed by appropriate selec-
tion of inversion time, which for FLAIR is approximately 2000 ms.
Effective TE is determined by low-amplitude phase-encoding
steps (central k-space). S 5 slice-select direction, R 5 ‘‘read’’ or
frequency-encode direction, P 5 phase-encode direction.

TABLE 1: FLAIR and MS in the cord

Author Summary
No. of MS

Patients Sequence TR/TE/TI (approximate)

White et al, 1992
Thomas et al, 1993
Hajnal et al, 1995
Keiper et al, 1997
Hittmair et al, 1996
Filippi et al, 1996
Stevenson et al, 1997

FLAIR good
FLAIR good
FLAIR good
FLAIR bad
FLAIR bad
FLAIR bad
FLAIR bad

3
16
2

15
20
13
10

Conventional FLAIR
Conventional FLAIR
Fast FLAIR
Fast FLAIR
Fast FLAIR
Fast FLAIR
Fast FLAIR

6000/20–90/2200
6000/120/2100
6000/60/2200
4000–11000/100–150/1500–2600
6000/120/2000
9000/105/2200
11000/144/2150

interfering high signal from CSF. Despite the long
acquisition time (.12 min) of the early sequence
iterations that did not have the advantage of the
FSE technique, the clinical usefulness in brain im-
aging was obvious. Evaluation of a wide variety of
intracranial diseases are performed with FLAIR
quite successfully (18, 23–25). The use of FLAIR
for evaluation of the spinal cord is a natural pro-
gression of this technique, given the difficulties en-
countered with CSF pulsation artifacts on T2-
weighted FSE images. The possibility of a T2
sequence with low CSF signal was enticing be-
cause it might improve detection of subtle cord sur-
face lesions. The FSE implementation of FLAIR
has markedly reduced imaging times, while main-
taining this unique sequence contrast.

The application of FLAIR for spinal cord im-
aging has not, however, been as straightforward as
for brain imaging, and there are widely divergent
opinions of its usefulness. Advocates recommend
using FLAIR as the primary sequence for intra-
medullary disease, whereas opponents argue that
it’s useless or misleading because of lesions missed
(10, 26–31). The latter is my admittedly biased
opinion. The breakdown of the relevant articles ad-
dressing FLAIR is presented in Table 1, focusing
on patients with multiple sclerosis (MS) as the ar-
chetypal cord lesion.

The literature is difficult to assess because of the
widely divergent techniques discussed. Multiple
parameters are varied in the different studies, in-
cluding field strength, coil, slice thickness, field of
view, echo train and spacing, matrix, and selective
vs nonselective pulses. Nevertheless, personal ex-
perience has tipped our interpretation of the liter-
ature strongly away from using FLAIR in the eval-
uation of spinal cord disease (Fig 6). We continue
to use FLAIR as part of routine brain evaluation.

Why is FLAIR so variable, and at times so in-
sensitive to intramedullary disease? This failure
would have direct clinical impact, as isolated spinal
cord involvement occurs in 15–20% of MS patients
(32), and finding cord lesions is more specific for
the diagnosis than cerebral white matter lesions
(33). Various causes have been postulated. Steven-
son et al (31) theorized that there might be an in-
trinsic difference in cerebral hemispheric lesions
and cord lesions giving rise to a shorter T2 for
cord. The concept of a fundamental pathologic dif-
ference in brain and cord MS lesions is also shared
by Filippi et al (30), although they recognize the
variable imaging parameters (TR/TE/TI) also as an-
other source of difficulty.

The presence of flow artifacts may also degrade
FLAIR images acquired with section-selective in-
version pulses (25). The pulsatile nature of CSF
creates spins that are not affected by the inversion
pulse, and therefore do not enter the slice during
the inversion interval, producing high-signal inten-
sity on the subsequent FSE image. This high signal
could potentially mask adjacent cord disease. This
effect can be considered analogous to the entry-
slice phenomenon seen on GE imaging. This prob-
lem is not present with a nonselective inversion
pulse as used by White and Thomas (26, 27). The
downside of the nonselective pulse is that each
slice will have a slightly different inversion time,
although this is not reported as a major limitation
for sagittal spinal imaging with few slices. None-
theless, the poor lesion detection of fast FLAIR
with a selective inversion pulse occurs even in the
face of very good CSF signal suppression, and so
the selective pulse most likely is a minor compo-
nent of lesion conspicuity degradation.

Perhaps more to the point is simply the heavy
T2 weighting of the fast FLAIR sequence that di-
minishes cord lesion contrast, as pointed out by
Hittmair (10). Care must be exercised to avoid
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FIG 6. False-negative fast FLAIR for demyelinating disease.
A, Sagittal T1-weighted image (500/12/2) demonstrates a markedly enlarged cord with slighted decreased signal centrally.
B, Sagittal T2-weighted FSE (4620/112/ 3) shows diffuse increased signal throughout cervical cord.
C, Sagittal FSE FLAIR (6000/105/ 2) shows low signal at C7-T1 level, but no abnormal increased signal as on the FSE.

FIG 7. Fast STIR sequence structure. This is analogous to
FLAIR sequence, except that TI time is shorter to null fat signal,
and low-amplitude phase-encode steps are acquired earlier. S 5
slice-select direction, R 5 ‘‘read’’ or frequency- encode direction,
P 5 phase-encode direction.

equating pretty images with bright CSF signal and
a sharp cord/CSF interface with good intramedul-
lary lesion detection. FSE and fast FLAIR sequenc-
es may have flaws in this regard. Both yield pleas-
ing image quality with low apparent artifacts, but
all too often fail to reveal a lesion because of very
heavy T2 weighting. Most cord disease will have
both prolonged T1 and T2, and a sequence that is
heavily T2-weighted will diminish lesion contrast.
This problem is further compounded by the long-
echo trains employed, which have a large amount
of T2 decay that blur images. The FSE sequence
that can give a good CSF myelographic image for
degenerative disk disease is not the sequence to use
for intramedullary disease.

Short-Inversion-Time Inversion Recovery (STIR)
Short-inversion-time inversion recovery (STIR)

has shown a high sensitivity for musculoskeletal
disease because of the synergistic effects of pro-
longed T1 and T2 in abnormal tissues, coupled
with the improved C/N and fat suppression (Fig 7)
(34–36). This technique has been favorably com-
pared to T1- and T2-weighted FSE, CSE, and fat
saturated FSE in the detection of vertebral meta-
static disease (37–39).

The use of STIR, and especially fast STIR, for
intramedullary disease is perhaps less well known.
In the analysis by Hittmair et al (10), the fast STIR
sequence was best for revealing MS lesions, and
showed lesions that were missed with other, more
routine techniques, such as FSE. Their technique
included asymmetric sampling with one echo col-
lected before and six echos collected after the TE
effective (echo train of 8), six averages, and a ce-

phalocaudal phase-encoding direction. The cephal-
ocaudal phase-encoding direction is typical for FSE
sagittal spine sequences. The fast STIR will require
a slightly shorter TI and more signal averages than
the conventional STIR sequence because of the
contribution of stimulated echos (40). The overall
image quality tends to be rather noisy, but the use-
fulness is provided by the high C/N. This technique
appears to be very useful for cervical cord disease,
but is more prone to motion artifact and falls short
in the evaluation of thoracic cord disease. We have
found that satisfactory sagittal fast STIR images
can be obtained with the following parameters:
1200/14/175, 192 x 256 matrix, 3-mm slice thick-
ness, ETL 5 3, coronal saturation pulse, time 5 3:
56 (Figs 8 and 9). A summary of the articles related
to STIR and the cord are presented in Table 2.
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FIG 8. T2W vs. FLAIR vs. STIR in demyelinating disease.
A, Fusiform enlargement of cord without enhancement is shown on sagittal T1-weighted sequence (500/12/2).
B, Abnormal high signal within cord is shown on sagittal FSE T2-weighted sequence (4620/112/ 3).
C and D, FSE spin-density weighted (2000/10/2), and FSE STIR (1200/14/4), respectively.
E, Abnormal cord signal is not revealed by fast FLAIR sequence (6000/105/ 2). Lesion is most conspicuous on FSE T2-weighted and

fast STIR sequences.

Diffusion-Weighted Imaging
Diffusion-weighted imaging (DWI) has been

used extensively for the evaluation of brain disease,
specifically for the detection of acute infarcts (41–
44). Acute infarcts have cytotoxic edema causing
cellular swelling and diminished interstitial space.
This decreased space restricts diffusion. DWI has
also been applied to characterize other diseases
such as epilepsy, brain tumors, and demyelinating
disease (13, 45, 46).

Applying DWI for spine imaging has been lim-
ited relative to brain imaging, mainly because of
the technical constraints imposed by motion and
bone artifact. Most DWI of the cord is performed
in vitro, and relates to the evaluation of posttrau-
matic change (47–48). The use of DWI for in vivo
human cord imaging is in its infancy (Fig 10). A
variety of techniques have been evaluated for in
vivo cord imaging including steady-state gradient,
SE, echo-planar imaging (EPI), and GE EPI. Gra-
dient-echo EPI appears the least useful because of

its tremendous susceptibility to artifacts from the
bony canal. Spin-echo EPI has shown cord abnor-
malities in a small number of traumatic and mye-
lopathic cases (49, 50). Apparent diffusion coeffi-
cient maps have also been generated from a gated
SE technique (51).

Extramedullary/Bony Abnormalities

For evaluation of degenerative disk disease, res-
olution now assumes a more dominant role relative
to contrast. As sequences have evolved, the matri-
ces have increased, and slice thickness has dimin-
ished. Two-dimensional image evaluation of the
neural foramina for osteophyte or lateral disk her-
niations is best accomplished by axial imaging.
High-signal-intensity CSF-type images are gener-
ally preferred because of the problem of visualizing
low-signal-intensity ligaments or osteophytes
against the dark CSF images on T1-weighted
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FIG 9. Chronic demyelinating disease.
A, Sagittal T2-weighted FSE (4620/112/ 3) shows faint focal increased signal in cervical cord at C1 and C3 levels.
B, Sagittal FSE FLAIR (6000/105/2) also shows very indistinct abnormal signal at those two levels.
C, High lesion-to-cord contrast is achieved with fast STIR sequence (1200/14/4).

TABLE 2: STIR and cord disease

Author Summary
No. of
Patients Sequences

TR/TE/TI
(approximate)

Thorpe et al, 1994
Mascalchi et al, 1993
Hittmair et al, 1996

STIR good
STIR good
STIR good

17
21
20

Fast STIR
Conventional STIR
Fast STIR

1500/51/175
1000–1400/30–120/100
2165/50/110

FIG 10. Echo-planar diffusion imaging of the normal cervical cord. Three orthogonal directions of diffusion gradients are applied:
anteroposterior (A); transverse (B); and through-plane (C). Notice the least signal from the cord with through-plane diffusion encoding
(parallel to white matter tracts) reflecting direction of relatively fastest water diffusion.

images. The now-classic articles by Enzmann and
Rubin (52, 53) defined the templates for partial flip
angle GE technique for the detection of cervical
disk disease. Others subsequently confirmed this
technique (54–56). The parameters manipulated to
change S/N and contrast included flip angle, TR,
and TE. For cervical disk disease, Enzmann et al
recommended a small flip angle (3–88) for the best
contrast for disk, cord, and CSF. TR should be kept
as short as possible because this reduces imaging
time, and these sequences are sensitive to motion
artifacts. TE should be kept short as well, because

this minimizes magnetic susceptibility artifacts that
may exaggerate the severity of foraminal stenosis.
Table 3 summarizes bright CSF GE sequences for
the cervical spine.

The major problem of 2D MR imaging tech-
niques in diagnosing cervical disease is its inability
to reveal foraminal disease accurately because of
long echo times, relatively thick image slices (3–5
mm), and views of exiting nerve roots limited to
the axial plane (57). Although overall examination
times have decreased with GE imaging, the length
of examinations continues to be problematic.
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TABLE 3: Bright CSF GE imaging and the cervical spine

Authors Sequence TR TE
Flip

Angle

Slice
Thickness/

Acquisitions
MT

Contrast

Enzmann 1988
Hedberg et al, 1988
Kulkarni et al, 1988
Tsuruda et al, 1989
Katz et al, 1989
Youssem et al, 1991
Yoshoika et al, 1994
Finelli et al, 1994
Lycklama et al, 1996
Melhem et al, 1996

2D GRASS
2D GRASS
2D GE
3D GE
2D GE
3D GE
2D GE (0.3 T)
2D GE
2D GE
3D GE

22–60
75

750
35

300
50

750
1367
616
39

12.5–25.0
12.3
9.0

15.0
14.0
15.0
23.0
18.0
22.0
6.0

3–88
108
308
58

108
58

258
458
208
58

5mm/8 acq
5mm/4 acq
5mm/4 acq
1.5–2mm/2 acq
5mm/4 acq
1.5mm
5mm/2 acq
3mm
3mm/4
1.5mm/1

no
no
no
no
no
no
yes
yes
yes
yes

One solution to these problems is found in GE
volume imaging, a 3D technique that allows short
TEs with thin contiguous slices and the reformating
of data in any desired viewing plane (58). In 3D
imaging, a volume of interest is defined by the ini-
tial radiofrequency (RF) excitation pulse instead of
by a thin slice such as in 2D imaging. This volume
of tissue can then be divided into thin contiguous
slices by the addition of phase encoding along the
slice-select direction. When phase encoding is used
in two different directions, the imaging time is pro-
portionally increased by the number of slices se-
lected (imaging time 5 TR 3 number of excita-
tions 3 number of in-plane phase-encoding steps
3 number of partitions), as compared with 2D im-
aging times. The theoretical advantages of 3D over
2D imaging include increased S/N, and thin con-
tiguous slices with a more accurate slice thickness
that can be obtained without the problem of cross-
talk (59–61). Three-dimensional GE imaging has
two major drawbacks for routine cervical spine im-
aging. The first is the necessity of using a low flip
angle (approximately 58) to produce the desired
high-signal CSF. The low flip angle gives low S/N,
and the all-too-familiar grainy image. The second
problem is the sensitivity of the sequence to motion
artifacts. Our standing routine for cervical degen-
erative disease includes a 3D GE axial sequence,
with the backup of a 2D GE because patient motion
degrades image quality. One technique that shows
great promise in reducing these problems is mag-
netization transfer (MT).

Magnetization Transfer
Magnetic transfer (MT) imaging is based on the

differences between ‘‘bound’’ water protons associ-
ated with macromolecules (proteins and cell mem-
branes) and free or ‘‘bulk’’ water protons. The ap-
plication of an off-resonance pulse will saturate the
bound water protons, leading to the transfer of some
saturation from the bound water to the bulk water
protons via dipole-dipole interactions and chemical
exchanges (62–64). In practical terms, this means that
the addition of an easily implemented MT pulse to a
sequence can generate a new contrast mechanism.
This contrast technique can be looked at quantita-

tively, as has been done for MS lesions in the brain.
Another approach is to add the MT pulse to a rou-
tinely used sequence as an image C/N modifier. The
most widespread applications of this intrinsic contrast
modification are TOF MR angiographic techniques,
and SE contrast-enhanced brain imaging. In these se-
quences, MT acts as a background suppression tech-
nique to allow improved MIP MR angiographic pro-
jections and enhanced lesion detection, respectively
(65–69).

In spine imaging, the use of MT may give sev-
eral benefits as described by Finelli (70). The ad-
dition of the MT pulse increases the sensitivity of
the GE images to intramedullary disease, such as
MS plaques. The intervertebral disk shows mod-
erate MT suppression, so the addition of the MT
pulse improves contrast between the disk and the
adjacent CSF. The improved contrast of the MT GE
images could be traded off against higher resolu-
tion images, which is always of concern in cervical
spine imaging (Fig 11). The downside of MT is
diminished definition of the disk space on the axial
images, which makes defining the anatomic level
slightly more difficult. Finally, Melhem et al de-
scribed an important additional advantage of the
high-contrast MT GE sequences, namely that the
high signal of CSF could be maintained with a
much shorter TE (71). This short TE would mini-
mize the magnetic susceptibility effect that causes
an exaggeration of foraminal stenosis (72).

Steady-State Sequences
True fast imaging with steady-state precession

(FISP), a sequence that has been around since the
early days of GE imaging, has more recently made
a resurgence for neurologic imaging (Fig 12) (73,
74). Steady-state sequences with balanced gradients
(i.e., True FISP and CISS) have the advantage of
providing high-signal-intensity CSF with higher
flip angles. The high flip angle gives better S/N.
True FISP is considered ‘‘true’’ because the net ef-
fect of the imaging gradients on transverse phase
evolution is zero, whereas it is constant but nonzero
for the more generic FISP. The zero-net effect of
the gradients allows spins that are stationary, as
well as those moving with constant velocity to
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FIG 11. MT contrast. Axial gradient echo slice without (A) and with (B) application of off-resonance MT pulse. Application of MT
dramatically improves cord/CSF contrast.

FIG 12. True FISP sequence structure with balanced gradients.
Net effect of gradients allows spins that are stationary as well as
those moving with constant velocity to reach a steady state. Gz
5 slice select gradient, Gy 5 phase encode gradient, and Gx 5
frequency encode gradient.

reach a steady state. Only the stationary spins
achieve a steady state in the more generic FISP.

The problem with these steady-state balanced-
gradient sequences, and why they did not make a
great impact for imaging at high-field strengths,
was the presence of a dark banding pattern across
the images (Fig 13). This banding occurs because
steady-state sequences are also dependent upon the
resonant offset angle (b), the phase angle through
which the spins process between sequential RF
pulses. This variation in b occurs with field inhomo-
geneities and imperfections in gradient refocusing.
Various techniques are available to address this
problem, such as phase alternating the successive
RF pulses, or obtaining separate acquisitions with
08 and 1808 phase offset, and combining the im-
ages. This sequence provides a rapid method of

achieving high-signal CSF with good S/N. The
downside of this sequence is its relatively poor
soft-tissue contrast. Applications in the brain have
focused on a 3D technique and visualization of the
inner ear (75). For the spine, CISS allows for good
visualization of the intradural cervical roots, and
might be useful for a more general evaluation of
cervical degenerative disease when combined with
a technique better suited for evaluation of the fo-
ramina, such as axial FSE or 3D GE (Fig 14) (76).
This technique has also been successfully applied
to imaging posttraumatic brachial plexus injuries,
with the axial native images allowing definition of
the avulsed roots, and the 3D MIP projections dis-
playing the meningoceles (77). Steady-state se-
quences have also had been used for 3D MR mye-
lography (78, 79).

True FISP also appears useful as a localization
method for MR-guided interventions at low-field
strength (0.2 T) (80). The problem of resonant off-
set and the banding pattern is not of such concern
at low-field strength simply because low-field
strength corresponds to lower resonant frequency,
and consequently less resonant offset. True FISP in
this particular setting gives single-slice images with
good contrast in less than 2 s (TR , 12 ms).

Diffusion
Baur et al (81) used a steady-state free preces-

sion sequence (SSFP) (a.k.a. contrast-enhanced
Fourier acquired steady-state technique [CE-
FAST], and reversed fast imaging with steady-state
precession, collection of the refocused echo [PSIF])
with added diffusion-sensitive gradients to distin-
guish malignant from benign vertebral compression
fractures in 30 patients (Fig 15). This is a tantaliz-
ing concept for a notoriously difficult imaging dif-
ferential diagnosis. The underlying theory is that,
with a benign fracture, the marrow edema will al-
low relatively increased diffusion, making the ver-
tebral bodies dark on the SSFP diffusion sequence
relative to normal marrow. Conversely, the cellular
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FIG 13. True FISP (17/8/2, 708 flip angle).
A, Sagittal 2-mm slice from one of the

two sequences acquired with different RF
phase (combined to produce final image)
demonstrates areas of banding or signal
loss related to nonuniform resonant offset.

B, Combined final sequence shows
more uniform high-signal CSF with relative
suppression of soft-tissue signal.

FIG 14. 3D CISS (12/6/3, 708 flip angle). Axial 2-mm section through cervical spine shows sharp interface between cord/intradural
dorsal and ventral roots (arrows) and the CSF. There is slight truncation artifact surrounding the cord, manifest as curvilinear low signal.

FIG 15. PSIF diffusion-sequence structure (aka, FISP backwards).Diffusion weighting is applied as a single gradient along slice-select
direction. Acquired signal is an RF echo. Echo occurs prior to alpha pulse because it is generated by the refoccussing of magnetization
that has resided in transverse plane over at least one previous complete TR cycle. Gz 5 slice-select gradient, Gy 5 phase- encode
gradient, Gx 5 frequency-encode gradient.

elements of a malignant fracture will restrict dif-
fusion, allowing for increased signal on the native
images. This technique has problems, and addition-
al studies need to be done confirming this poten-
tially very important finding. Le Bihan (82) notes
in the accompanying editorial on the Baur article
that the SSFP sequence cannot be quantified be-
cause the confounding effects of T1, T2, and dif-
fusion are not easy to separate, as is the case with
an SE diffusion sequence. Further, the SSFP se-
quence Baur used had fairly low diffusion sensiti-
zation (the b factor), on the order of 165 s/mm2.
Typical brain diffusion studies routinely have b fac-
tors on the order of 1000 s/mm2. Although a higher
b factor was tested in a small group of patients in
the Baur study, it did not yield more information,
and suffered from diminished S/N. Our anecdotal

experience with this technique has been somewhat
variable (Figs 16 and 17). More experience is need-
ed to determine if this technique can effectively
differentiate malignant from benign findings for
compression fractures.

Conclusion
After all is said and done, where are we headed

with spinal MR imaging? In a perfect world, only
a few very robust sequences would be required for
the complete evaluation of the spinal axis, with
high S/N and lesion contrast, and no artifacts. Re-
alistically, the future holds an even wider array of
sequences and techniques that will be most useful
for specific areas of disease, and will require a
greater degree of tailoring. Perhaps as critical as
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FIG 16. Diffusion true positive in patient
with myeloma (PSIF 22/2/10, 758 flip
angle).

A, Sagittal T1-weighted image shows
diffuse abnormal marrow signal with mild
compression fracture.

B, Sagittal PSIF sequence with diffusion
gradient shows high signal from compres-
sion fracture comfirming malignant origin.

FIG 17. Diffusion false positive in trauma (PSIF 22/2/10, 758 flip angle) found in a 17-year-old who sustained a flexion injury at C3–4
after going over handlebars of waterski.

A and B, Sagittal T1-weighted (A) and T2-weighted (B) images show anterior wedge deformities of C3 and C4 bodies.
C, Diffusion sequence shows slight increased signal from bodies, falsely suggesting a cellular infiltrate.

the native sequences are the sources of artifact and
error related to data manipulations such as inter-
polation, data sharing, and synthesis. Diligence and
tenacity will be required to tease out the specifics
of an imaging sequence that will allow better image
interpretation in light of its specific structure, and
will maintain the premier role that MR has
achieved in the evaluation of spinal diseases.
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