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ORIGINAL RESEARCH
ADULT BRAIN

Longitudinal Changes in Cerebral Perfusion, Perivascular
Space Volume, and Ventricular Volume in a Healthy Cohort

Undergoing a Spaceflight Analog
J.B. Tidwell, J.A. Taylor, H.R. Collins, J.H. Chamberlin, G. Barisano, F. Sepehrband, M.D. Turner, G. Gauthier,

E.R. Mulder, D.A. Gerlach, and D.R. Roberts

ABSTRACT

BACKGROUND AND PURPOSE: A global decrease in brain perfusion has recently been reported during exposure to a ground-based
spaceflight analog. Considering that CSF and glymphatic flow are hypothesized to be propelled by arterial pulsations, it is unknown
whether a change in perfusion would impact these CSF compartments. The aim of the current study was to evaluate the relationship
among changes in cerebral perfusion, ventricular volume, and perivascular space volume before, during, and after a spaceflight analog.

MATERIALS ANDMETHODS: Eleven healthy participants underwent 30 days of bed rest at 6° head-down tilt with 0.5% atmospheric
CO2 as a spaceflight analog. For each participant, 6 MR imaging brain scans, including perfusion and anatomic-weighted T1 sequen-
ces, were obtained before, during, and after the analog period. Global perfusion, ventricular volume, and perivascular space volume
time courses were constructed and evaluated with repeated measures ANOVAs.

RESULTS: Global perfusion followed a divergent time trajectory from ventricular and perivascular space volume, with perfusion
decreasing during the analog, whereas ventricular and perivascular space volume increased (P, .001). These patterns subsequently
reversed during the 2-week recovery period.

CONCLUSIONS: The patterns of change in brain physiology observed in healthy participants suggest a relationship between cere-
bral perfusion and CSF homeostasis. Further study is warranted to determine whether a causal relationship exists and whether simi-
lar neurophysiologic responses occur during spaceflight.

ABBREVIATIONS: BDC ¼ baseline data collection; HDT ¼ head-down tilt; ICP ¼ intracranial pressure; PVS ¼ perivascular spaces; R ¼ recovery; VaPER ¼
Visual Impairment Intracranial Pressure and Psychological :envihab Research

Spaceflight is associated with various environmental stressors
including the absence of normal gravity, chronic exposure to

altered atmospheric compositions, and reduced sensory input.
Study of the body’s physiologic responses to these challenges will
advance future space exploration and may provide insight into
normal function on Earth. Following spaceflight, brain MR imag-
ing has revealed structural changes such as upward shift of the

brain,1,2 narrowing of the vertex CSF spaces,3 increased ventricular
volume,3-6 enlargement of perivascular spaces (PVS),7,8, and redis-
tribution of free water.9

Modeling the spaceflight environment on Earth is challenging.
Space agencies have commonly used a 6° head-down tilt (HDT)
bed rest as an earth-based analog to study the effects of micrograv-
ity on the body. By reversing the gravitational vector in the z-
direction toward the head compared with toward the feet in the
normal daily upright position, HDT simulates certain physiologic
changes of spaceflight including the following: unloading of the
lower body, altered sensory input, and cephalad fluid shifts.10,11

However, many have noted shortcomings of HDT as a direct
spaceflight analog.10,12 In 2017, the National Aeronautics and
Space Administration (NASA) and the German Space Agency per-
formed a 30-day bed rest study, known as the Visual Impairment
Intracranial Pressure and Psychological :envihab Research (VaPER)
study, which improved on past bed rest protocols by exposing par-
ticipants to elevated CO2 levels to mimic the International Space
Station conditions and enforcing a “strict” HDT position through-
out the intervention.13 In the multi-investigator VaPER bed rest
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study, several researchers have documented alterations in brain
function and behavioral performance.14-17 Of relevance to the cur-
rent study, Roberts et al16 documented a mean decrease in global
relative brain perfusion during the bed rest period.

However, the relationship between reduced brain perfusion
and other physiologic variables such as ventricular volume and
PVS has not been examined in participants in VaPER. Previous
work has shown that both parameters are sensitive to space-
flight3,5,7,8 and additionally, that PVS has evidence of links to
decreased cerebral perfusion.18,19 Therefore, the purpose of this
study was to expand on previous findings by examining concur-
rent changes in perfusion, ventricular volume, and PVS during
HDT and recovery. We hypothesized that decreased perfusion
would be accompanied by an increase in ventricular and PVS vol-
umes, like that seen in astronauts. Understanding changes in cer-
ebral physiology that occur in response to the unique physiologic
stressor of altered gravity is vital for ensuring optimal perform-
ance and safety for continued space exploration, while also pro-
viding insight to better understand fundamental cerebral structure
and function in patients on Earth.

MATERIALS AND METHODS
Participants
Eleven healthy participants (6 men, 5 women; median age, 33 years;
median absolute deviation¼ 6) participated in the VaPER study
conducted in Cologne, Germany, at the :envihab facility of the
German Aerospace Center (Deutsches Zentrum für Luft-und
Raumfahrt). Participants provided written informed consent, and
the study was approved by the ethics commission of the local medi-
cal association (Ärztekammer Nordrhein) and institutional review
boards at NASA and the Medical University of South Carolina. All
participants underwent routine health screening as previously
reported, and all were nonsmokers for at least 6months before the
start of the study.14

Study Protocol
A detailed protocol of the multi-investigator study has been
described previously.13,16,17 Briefly, participants began their stay
at the :envihab facility 14 days before the bed rest portion of the
study for baseline data collection (BDC), while remaining ambu-
latory under normal atmospheric conditions. Next, they under-
went 30 days of 6° HDT bed rest in a 0.5% CO2 environment
(HDT 1 CO2). Participants maintained the HDT position at all
times, including while eating, and were continually monitored
via video to ensure compliance. Finally, they recovered (R) in the
facility for 14 days postbed rest, returning to normal atmospheric
and ambulatory conditions. MR imaging was performed at 6
time points: 13 (BDC-13) and 7 (BDC-7) days before bed rest, on
days 7 (HDT7) and 29 (HDT29) during bed rest, and 5 (R1 5)
and 12 (R1 12) days after bed rest during recovery. Throughout
the study, participants were given standardized meals to maintain
body weight and standardized daily water consumption levels
based on their weight.20 Participants were not allowed to have
caffeinated beverages.20 For scans during the analog period, par-
ticipants were placed on a foam wedge on the MR imaging table
to strictly maintain the HDT position and supplied CO2 at 0.5%
via a mask to maintain the same CO2 exposure throughout the

MR imaging examinations. Following the precedent of prior
reports, BDC-13 was considered an acclimation time point, and
BDC-7 was considered the pre-bed rest time point.14,15,17

MR Imaging Protocol
MR imaging was performed at 3T (Biograph mMR, software,
Version VE11P; Siemens). The protocol included a 3D T1-
weighted gradient-echo pulse sequence for anatomy (192 slices,
0.94� 0.94� 0.90mm, FOV¼ 270� 270mm, TR¼ 1.9 seconds,
TE ¼ 2.49ms, flip angle ¼ 9°) and pulsed ASL using 3D gradi-
ent/spin-echo sequences with background suppression, flow-sensi-
tive alternating inversion recovery (FAIR) labeling, and quantitative
imaging of perfusion with a single subtraction with thin-section TI1
periodic saturation (Q2-TIPS) bolus saturation (40 slices, 1.5 �
1.5 � 3mm voxel resolution, FOV ¼ 192� 192, TR ¼ 4600ms,
TE ¼ 16.38ms, flip angle ¼ 180°). Four control-label pairs were
acquired with a 700-ms pulse duration and a 1990-ms postlabel-
ing delay. This sequence, which was the only ASL perfusion
sequence available on the :envihab MR scanner, did not include
calibration imaging needed for CBF quantification. Thus, perfu-
sion-weighted maps were globally scaled with an arbitrary value
of M0¼ 1000. Therefore, as previously, relative perfusion values
are reported.16

Image Processing
Detailed image-processing methods are included with Online
Supplemental Data and briefly described here.

PWIs were created from ASL data using the FMRIB Software
Library (FSL, Version 6.0.3; (http://www.fmrib.ox.ac.uk/fsl) as
previously described.16 Global whole-brain PWI values were
extracted from the masked perfusion maps to statistically evaluate
the mean perfusion of each subject. Segmentation and calculation
of ventricular volumes were performed using FreeSurfer Recon-
all (Version 6.0.0; http://surfer.nmr.mgh.harvard.edu) on T1-
weighted structural brain images.21 A sum of the lateral and third
ventricle volumes was calculated and hereafter is referred to as
our measure of ventricle volume. The fourth ventricle was omit-
ted due to previous work showing that its volume was unchanged
by spaceflight.5,6 WM perivascular space (WM-PVS) segmenta-
tion was performed on the parcellations in native space previ-
ously obtained from FreeSurfer via an automated pipeline,22 as in
previous studies.22-24 In this study, we focused solely on WM-
PVS and not the basal ganglia PVS because the widespread orien-
tation of WM-PVS aligned more closely with our interest in
global perfusion.

Statistical Analyses
Age is described with median and median absolute deviation. Z-
scores [z ¼ (x – mean) / (SD)] were calculated across time for
each subject to account for individual differences and facilitate
comparisons between metrics measured on different scales. A
repeated measures ANOVA was performed on the subjects’ z-
scores for each time point for global relative perfusion, ventricu-
lar volume, and PVS volume. Partial eta-squared (h 2

p) effect sizes
were reported. We evaluated 5 time points: BDC-7, HDT7,
HDT29, R1 5, and R1 12. Pair-wise comparisons were used to
evaluate changes in brain metrics for the following a priori
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comparisons of interest: from baseline to the end of bed rest
(BDC-7 versus HDT29), from baseline to recovery (BDC-7 to
R1 12), and between brain metrics at these times (BDC-7,
HDT29, R1 12). Pair-wise effect sizes were calculated with the
Hedges’ g and were interpreted as very small (g¼ 0.01), small
(g¼ 0.20), medium (g¼ 0.50), large (g¼ 0.80), very large
(g¼ 1.20), and huge (g¼ 2.00)25 and were reported with 95% CIs.
Because arterial pulsations are thought to propel CSF along the
PVS, a Spearman rank correlation was performed between indi-
vidual changes in perfusion and changes in PVS z-scores from
baseline (BDC-7) to the end of bed rest (HDT29). Statistical sig-
nificance was set at the a, .05 threshold, and analyses were con-
ducted with R statistical and computing software, Version 4.1.2
(http://www.r-project.org/) and SPSS, Version 27 (IBM).

RESULTS
Mean raw perfusion, ventricle volume, and PVS values are provided
in Table 1 and participant examples are provided in Figures 1–3. A
significant interaction revealed differing trajectories for perfusion,
PVS volume, and ventricular volume as time progressed from
before HDT1 CO2 to recovery, (F(8, 80)¼ 11.08; P, .001; h 2

P ¼
0.53) (Table 2 and Fig 4).

Baseline Differences among Perfusion, Ventricular
Volume, and PVS
Relative to the mean level across time for each metric, at baseline,
perfusion was greater than ventricular volume (P, .001;
g¼ 1.49; 95% CI, 0.61–2.33) and PVS volume (P, .001; g¼ 1.57;
95% CI, 0.67–2.43), and PVS volume did not differ from ventric-
ular volume (P¼ .440; g¼ 0.23; 95% CI,�0.35–0.81).

Brain Changes during HDT
By the end of the HDT 1 CO2 pe-

riod, there was an increase in ven-

tricular volume (P, .001; g¼ 1.92;

95% CI, 0.90–2.92; Fig 2) and PVS

volume (P, .001; g¼ 2.64; 95% CI,

1.36–3.90; Fig 3), whereas perfusion

decreased (P, .001; g¼ 1.78; 95%

CI, 0.81–2.72; Fig 1) compared with

baseline. A negative change-change

correlation with perfusion and PVS

was observed from BDC-7 to HDT29,

indicating that a larger increase in PVS

volume was associated with a larger

decrease in perfusion (rs[9]) ¼ �0.77,

P¼ .008).

Brain Recovery from HDT
The divergent trajectories of brain
metrics continued during recovery as
ventricular volume (P, .001; g¼ 2.67;
95% CI, 1.38–3.95) and PVS volume
(P ¼ .012; g¼ 0.89; 95% CI, 0.19–
1.56) decreased from HDT29 to
R1 12, whereas global perfusion

increased during recovery (P¼ .006; g¼ 1.01; 95% CI, 0.28–
1.71; Table 2 and Fig 4). At the end of recovery (R1 12), their
relative positions shifted with global perfusion significantly
greater than both PVS volume (P ¼ .025; g¼ 0.76; 95% CI,
0.09–1.41) and ventricular volume (P ¼ .004; g¼ 1.07; 95% CI,
0.32–1.78) with no difference between PVS and ventricular volume
(P¼ .146; g¼ 0.46; 95% CI,�0.15–1.05).

HDT Differences between Perfusion, Ventricular Volume,
and PVS
At HDT29, ventricular volume was greater, relative to its mean
across time, than both PVS volume (P¼ .017; g¼ 0.83; 95% CI,
0.14–1.49) and perfusion (P, .001; g¼ 2.05; 95% CI, 0.99–3.09),
and PVS volume was greater than perfusion (P , .001; g¼ 1.47;
95% CI, 0.60–2.30).

Recovery versus Baseline Differences
At the end of recovery, we found no differences compared with

the baseline values for ventricular volume (P¼ .619; g¼ 0.15; 95%

CI, �0.43–0.72), PVS volume (P¼ .275; g¼ 0.33; 95% CI, �0.26–

0.91), or global perfusion (P¼ .503; g¼ 0.20; 95% CI, �0.20

to �0.38). The brain metrics revealed a double dissociation in

which ventricular volume and PVS volume increased during

HDT1CO2 with a decrease to baseline levels during recovery,

whereas global perfusion decreased during the HDT 1 CO2 pe-

riod and increased to baseline levels during recovery, suggesting

distinct neurophysiological responses to simulated microgravity.

DISCUSSION
The purpose of this study was to investigate changes in cerebral
perfusion, ventricular volume, and PVS volume in healthy

Table 1: Raw values for brain metrics at each time pointa

BDC-7 HDT7 HDT29 R+ 5 R+ 12
Ventricular volume (mL) 16.32 (3.14) 17.08 (3.12) 17.39 (3.41) 16.86 (3.24) 16.24 (3.12)
Global perfusion
(arbitrary units)

99.25 (15.4) 82.04 (17.53) 81.56 (8.75) 92.47 (15.41) 98.31 (20.36)

Perivascular space (mL) 1.78 (0.39) 2.12 (0.40) 2.14 (0.45) 2.14 (0.61) 1.88 (0.50)
a Data are mean and SD.

Table 2: Z-score scaled brain metrics at each time pointa

BDC-7 HDT7 HDT29 R+ 5 R+ 12
Ventricular volume �0.71 (0.73) 0.56 (0.30) 1.00 (0.34) 0.07 (0.55) �0.92 (0.64)
Perfusion 0.72 (0.74) �0.51 (0.96) �0.75 (0.56) 0.08 (0.52) 0.45 (0.79)
PVS �0.91 (0.41) 0.47 (0.77) 0.55 (0.57) 0.41 (0.88) �0.52 (0.76)

a Data are mean and SD.

FIG 1. Mean perfusion-weighted images using masks of all participants at each time point
throughout the study. Yellow/red indicates greater perfusion on arbitrary scaled units.

1028 Tidwell Sep 2023 www.ajnr.org

http://www.r-project.org/


participants in response to 30 days of HDT 1 CO2. The main
finding was statistically significant changes in brain metrics of op-
posite directionality, with global perfusion decreasing and ventric-
ular/PVS volumes increasing during HDT 1 CO2 and subsequent
reversal during recovery.

While 2 recent studies found alterations in PVS volumes in
astronauts postspaceflight,7,8 this is the first study to report a
change in PVS volumes in an HDT microgravity analog setting,
and in general, transient PVS dilation and reversal in a cohort of
healthy participants. Furthermore, decreased global perfusion in
VaPER participants presented by Roberts et al16 is the only previ-
ous study examining longitudinal changes in perfusion by MR
imaging in a prolonged microgravity analog. A short-duration
study found a 17%–20% decrease in CBF after 26.5 hours of 12°
HDT measuring carotid and vertebral artery blood flow using a
cine phase-contrast MR image, but it did not extrapolate to multiple
time points.26 Other HDT studies have investigated measurements

of CBF velocity via transcranial Doppler.
However, the results of these studies are
inconclusive, likely due to limitations of
this technique based on the assumption
that the cross-sectional area of the inter-
rogated vessel is fixed, which might not
be the case, particularly in an environ-
ment with altered CO2 levels.16,27

Although a perfusion-PVS link has not
been explored in a longitudinal study,
the inverse relationship observed in this
study is in line with previous results that
showed that greater PVS volumes may
be associated with decreased CBF in
healthy participants and patients with
intracranial and extracranial athero-
scleroisis.18,19 Moreover, the ventricular
volume changes presented here align
with previous findings after HDT (a
2%–3% increase in lateral ventricle vol-
ume was found after 26.5 hours of
HDT)26 and long-duration spaceflight
(increases of �11% have been found in
both astronauts and cosmonauts.) 2,3,5

The mechanisms driving decreased
cerebral perfusion and ventricular/PVS
enlargement in healthy participants
during the 30days of HDT 1 CO2 are
unknown. However, it is becoming
clear that real and simulated micro-
gravity elicit changes in cerebral hemo-
dynamics and CSF dynamics.27,28 In
spaceflight and HDT, normal hydro-
static pressure gradients, usually experi-
enced along the head-to-foot axis
during upright posture, are reduced,
resulting in the observed cephalad fluid
shifts.27-29 It has been hypothesized
that this upward fluid shift may lead to
venous congestion in the head and pos-

sibly elevated intracranial pressure (ICP).5,16,28 From a hemody-
namic perspective, venous congestion could lead to venous
hypertension, elevated ICP, and decreased cerebral perfusion.
Indeed, impaired venous outflow has been linked to reduced cere-
bral perfusion in patients with chronic cerebrospinal venous insuf-
ficiency.30-32 Following surgical restoration of normal internal
jugular venous flow, patients demonstrated improved brain perfu-
sion and a 9.6% reduction in ventricular size.30 Most interesting,
this change in ventricular volume related to venous insufficiency is
similar to the ventricular volume change previously reported in
astronauts following long-duration spaceflight.1,25 In an astronaut
population, a recent article showed postflight increases in superior
sagittal, transverse, and sigmoid sinus volumes.33 The authors sug-
gest improper venous drainage due to the absence of gravitational
gradients and that this may explain thrombosis and abnormal in-
ternal jugular venous flow reported in astronauts.34,35 As an addi-
tional contributing factor, cardiac output and stroke volume are

FIG 2. T1 images with examples of ventricular volume enlargement for 2 participants 7 days into
bed rest. A and B, Axial section with arrows highlighting areas of gross ventricular enlargement in the
lateral ventricles. C and D, Coronal section with arrows highlighting enlargement of the third ventricle.
Participants shown experienced a 9.12% and 12.31% increase in ventricular volume, respectively.

FIG 3. 3D mask representation of WM-PVS of a sample participant from pre-bed rest (BDC-7) to
the end of bed rest (HDT29). The following participant experienced a 12% increase in PVS volume.
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likely affected by microgravity. Reviewing the current literature,
Bateman and Bateman36 surmised that both are reduced in HDT
but increased during spaceflight, which may point to a key physio-
logic difference between the environments.

Similarly, it is likely CSF homeostasis is altered by reversal of
the gravitational gradient. Upward shift of the brain itself has been
suggested to impair CSF resorption by compression of the supe-
rior sagittal sinus.5,33 In this theory, the ventricular system may
then act as a buffer for excess CSF resulting in ventricular enlarge-
ment. Similarly, an increase in PVS volume may reflect obstruc-
tion or inefficiency in the exchange of CSF and interstitial fluid
that occurs in perivascular channels. CSF flow is intrinsically con-
nected to hemodynamics in that transmission of arterial pulsa-
tions are a driving force for CSF movement.37 In this view,
decreased perfusion could reduce the ability to circulate CSF, with
resulting consequences for the perivascular and ventricular com-
partments. Indeed, cross-sectional studies showing an inverse
relationship between cerebral perfusion and PVS size have
hypothesized that decreased blood flow leads to increased intersti-
tial fluid around the PVS and subsequent PVS dilation.18 This hy-
pothesis is in line with the negative correlation between perfusion
and PVS volume seen in this study. Measurements of ICP could
help elucidate the interplay between perfusion and CSF changes,
but no direct measurement of ICP during long-duration HDT or
microgravity has been performed. However, several studies have
reported elevated ICP in the acute stages of HDT or in the transi-
tion from upright to supine.38,39 Additionally, several astronauts
presented with mildly elevated opening pressures via lumbar
puncture (21–28.5 cm H20) months after spaceflight.40

A study limitation was the necessary use of an ASL sequence that
did not provide absolute CBF values. The small sample size (n¼ 11)
and large number of relevant study variables reduced our statistical

power, though several group-level findings
had robust effect sizes. Additionally, vari-
ous methods for PVS quantification exist,
and the automated method used here
based on PVS morphologic features has
potential limitations, such as partial volu-
ming effects of the enclosed vessel.41 Most
important, it is not clear that HDT bed
rest represents an accurate terrestrial ana-
log for spaceflight.12

Here, we document an association
among patterns of cerebral perfusion,
ventricular volume, and PVS volume
that occur over a HDT 1 CO2 inter-
vention and recovery. The findings
contribute to our understanding of the
relationships among the circulatory,
glymphatic, and ventricular systems of
the brain, specifically, revealing a possi-
ble direct link between PVS volumes
and cerebral perfusion demonstrated
by a prolonged perturbation of CBF in
healthy participants. The results also
provide additional evidence of changes
in cerebral physiology in response to

simulated microgravity. The significance of these changes, if any,
should be further explored. For example, alterations in vision and
ophthalmologic findings following spaceflight have been reported
in astronauts, known as the spaceflight-associated neuro-ocular
syndrome and thought to be linked to cephalad fluid shifts and ve-
nous congestion.40 Altered cerebral physiology may also play a
role in cognitive and performance decrements previously reported
in astronauts.3,14,42 Most important, given the increasing number
of commercial spaceflight participants who may not be as physi-
cally fit as career astronauts and who may have mild forms of cere-
brovascular disease, a pronounced decrease in cerebral perfusion
without adequate reserve raises the possibility of spaceflight-
induced ischemic events. While these data represent one step for-
ward in developing a comprehensive model of the neurophysio-
logic response to microgravity, ultimately inflight evaluation of
cerebral perfusion and ICP in astronauts is greatly needed.
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