
of May 30, 2025.
This information is current as

Glioblastoma: A Multi-Institutional Study
with Progression-Free Survival in
from the Tumor and Its Habitat Associated 
Stable and Discriminatory Radiomic Features

Leo, M. Ahluwalia, A. Madabhushi and P. Tiwari
R. Verma, V.B. Hill, V. Statsevych, K. Bera, R. Correa, P.

http://www.ajnr.org/content/43/8/1115
https://doi.org/10.3174/ajnr.A7591doi: 

2022, 43 (8) 1115-1123AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57948&adclick=true&url=https%3A%2F%2Fmrkt.us-marketing.fresenius-kabi.com%2Fajn_pdf_1872x240_may25
https://doi.org/10.3174/ajnr.A7591
http://www.ajnr.org/content/43/8/1115


ORIGINAL RESEARCH
ADULT BRAIN

Stable and Discriminatory Radiomic Features from the
Tumor and Its Habitat Associated with Progression-Free

Survival in Glioblastoma: A Multi-Institutional Study
R. Verma, V.B. Hill, V. Statsevych, K. Bera, R. Correa, P. Leo, M. Ahluwalia, A. Madabhushi, and P. Tiwari

ABSTRACT

BACKGROUND AND PURPOSE: Glioblastoma is an aggressive brain tumor, with no validated prognostic biomarkers for survival before sur-
gical resection. Although recent approaches have demonstrated the prognostic ability of tumor habitat (constituting necrotic core, enhancing
lesion, T2/FLAIR hyperintensity subcompartments) derived radiomic features for glioblastoma survival on treatment-naive MR imaging scans,
radiomic features are known to be sensitive to MR imaging acquisitions across sites and scanners. In this study, we sought to identify the
radiomic features that are both stable across sites and discriminatory of poor and improved progression-free survival in glioblastoma tumors.

MATERIALS AND METHODS:We used 150 treatment-naive glioblastoma MR imaging scans (Gadolinium-T1w, T2w, FLAIR) obtained from 5
sites. For every tumor subcompartment (enhancing tumor, peritumoral FLAIR-hyperintensities, necrosis), a total of 316 three-dimensional
radiomic features were extracted. The training cohort constituted studies from 4 sites (n ¼ 93) to select the most stable and discrimina-
tory radiomic features for every tumor subcompartment. These features were used on a hold-out cohort (n ¼ 57) to evaluate their ability
to discriminate patients with poor survival from those with improved survival.

RESULTS: Incorporating the most stable and discriminatory features within a linear discriminant analysis classifier yielded areas under the
curve of 0.71, 0.73, and 0.76 on the test set for distinguishing poor and improved survival compared with discriminatory features alone
(areas under the curve of 0.65, 0.54, 0.62) from the necrotic core, enhancing tumor, and peritumoral T2/FLAIR hyperintensity, respectively.

CONCLUSIONS: Incorporating stable and discriminatory radiomic features extracted from tumors and associated habitats across multi-
site MR imaging sequences may yield robust prognostic classifiers of patient survival in glioblastoma tumors.

ABBREVIATIONS: AUC ¼ area under the curve; CoLlAGe ¼ Co-occurrence of Local Anisotropic Gradient Orientations; GBM ¼ Glioblastoma; Gd ¼
Gadolinium; LOSO ¼ leave-one-site-out; PI ¼ preparation-induced instability; PFS ¼ progression-free survival; T̂¼ training set; TCIA ¼ The Cancer Imaging
Archive; VS ¼ validation set; TS ¼ test set

G lioblastoma (GBM) is an aggressive brain tumor in which
survival without treatment is typically 3months. A conven-

tional first-line treatment regimen involves maximally safe surgi-
cal resection followed by concomitant chemotherapy and radia-
tion therapy. Despite this aggressive treatment, patient outcomes
are highly variable with .40% of patients with GBM inevitably
developing recurrence within 6months following treatment ini-
tiation. While GBM heterogeneity may be reflected in the MR
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imaging phenotypes with different intensity profiles across the
enhancing tumor and its associated habitat (comprising necrotic
core, peritumoral T2/FLAIR hyperintensity), these image-based
differences may not be visually appreciable to build prognostic
models of survival in patients with GBM using routine MR imag-
ing scans (Gadolinium-enhanced T1w [Gd-T1w], T2w, FLAIR).

Radiomic approaches (ie, high-throughput extraction of
quantitative features) have provided a surrogate mechanism for
capturing image-based phenotypes of disease heterogeneity on
routine MR imaging (ie, Gd-T1w, T2w, FLAIR) toward outcome
prediction in GBM and other tumors. Specifically, in GBM
tumors, the availability of large, multi-institutional imaging
cohorts such as The Cancer Imaging Archive-GBM (TCIA-
GBM) has enabled development of prognostic models using a
variety of radiomic feature families (ie, Gray, Haralick,1

Gradient,2 Laws,3 Gabor,4 Co-occurrence of Local Anisotropic
Gradient Orientations [CoLlAGe]5). These prognostic models
have leveraged radiomic features extracted from the tumor habi-
tat (necrotic core, enhancing tumor, peritumoral T2/FLAIR
hyperintensity) using routine MR imaging toward outcome pre-
diction in GBM tumors.6,7

However, a key challenge in enabling the clinical utility of
these radiomic approaches is to demonstrate their generalizability
to variations in image-acquisition protocols across scanners and
sites. Sources of variations in MR imaging acquisition can include
differing slice thicknesses, image contrast, voxel resolutions, mag-
netic field strengths, echo times, and repetition times.8-10 This
issue is of particular concern when including data from publicly
available repositories such as TCGA-GBM, where imaging scans
are pooled-in from across different institutions (Fig 1A).

While preprocessing steps including bias field correction and
intensity standardization, to some extent, have allowed correction
of site- and scanner-specific variations in MR imaging, multiple
studies have demonstrated9,11,12 that these steps may not be suffi-
cient to ensure stability of radiomic features during downstream
analysis. More recently, studies have used stability measures such
as the preparation-induced instability (PI) score13 to identify radio-
mic features that are stable (across sites) in the context of lung14

and prostate cancer.13,15,16 However, in the context of GBM, most
studies have focused on “controlled” test-retest studies12 or identify-
ing stable features across lesion segmentations obtained from differ-
ent expert readers.9,17,18 No work, to our knowledge, has explicitly

FIG 1. Overview of the methodology and overall workflow. MR imaging scans (Gd-T1w, T2w, and FLAIR) were preprocessed and segmented into
3 tumor subcompartments (necrosis, enhancing tumor, and peritumoral edema). Next, a set of radiomic features was obtained for each of the
MR imaging scans across the 3 tumor subcompartments. The most stable and discriminatory features were identified using the PI score and
AUC measures across every subcompartment and every MR imaging protocol. The identified stable and discriminatory features were used for
stability assessment across tumor subcompartments (with the associated habitat), individual imaging protocols (Gd-T1w, T2w, FLAIR), and MR
imaging acquisition parameters (magnetic field strength, pixel resolution, and slice spacing).
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interrogated the stability of radiomic features across inherent site-
specific acquisition variations within a multisite retrospective cohort
in GBM tumors. Additionally, existing approaches have not explic-
itly interrogated the stability of radiomic features from across differ-
ent subcompartments of the GBM tumor habitat. In this study, we
sought to address 2 specific questions in the context of building ro-
bust prognostic image-based markers for GBM tumors–Can we
identify the following: 1) a subset of radiomic features from across
imaging protocols such as Gd-T1w, T2w, and FLAIR scans that are
most stable across sites; and 2) a set of cross-site stable radiomic fea-
tures from each tumor subcompartment that are also discrimina-
tory of progression-free-survival (PFS) in GBM tumors?

MATERIALS AND METHODS
Data Description
A total of 150 retrospectively analyzed treatment-naive multipara-
metric GBM MR imaging scans (Gd-T1w, T2w, FLAIR) along
with their PFS information were obtained from 5 different institu-
tions, including studies from TCGA-GBM (n ¼ 60)19 and the Ivy
Glioblastoma Atlas Project (n ¼ 33)20 cohorts, as illustrated in
Table 1. We used median PFS obtained from our training cohort
to segregate the studies into improved (PFS. 6.5months) and
poor (PFS # 6.5months) GBM survivors. Additional details
regarding the data curation and preprocessing are provided in the
Online Supplemental Data.

Segmentation of the Tumor Habitat. Following preprocessing,
each 2D MR imaging slice with visible tumor was annotated by
expert readers (V.B.H. with .15 years of experience, V.S. with
12 years of experience, and K.B. with .3 years of experience in
neuroradiology) into 3 subcompartments: 1) enhancing tumor,
2) FLAIR hyperintensities (edema and nonenhancing tumor),
and 3) necrosis. Tumor lesion annotations were also used to
select the nontumor ROI for every patient volume. The nontu-
mor region was defined as the region obtained by mirroring the
tumor lesion (all 3 subcompartments in conjunction) onto the
contralateral hemisphere. The nontumor region for each study
was manually inspected by expert readers to verify that it did not
contain any proportion of the tumor region or skull. An overview

of the entire radiomics analysis workflow (including preprocess-
ing and segmentation) is provided in Fig 1.

Radiomic Feature Extraction. For every tumor subcompartment
(enhancing tumor, peritumoral FLAIR hyperintensities, and
necrosis), a set of 1264 radiomic features were extracted across
all 3 multiparametric MR imaging (Gd-T1w, T2w, and FLAIR)
scans. These radiomic features included Laws energy,3

Haralick,1 Gabor,4 CoLlAGe,5 Gradient,2 and first-order gray
level co-occurrence matrices (additional details provided in the
Supplemental Online Data, A.3). A total of 316 three-dimen-
sional radiomic textural features were extracted on a per-voxel
basis with window sizes of 3 and 5 from each tumor subcom-
partment per the MR imaging scan. Four first-order statistics
(median, variance, skewness, kurtosis) per feature descriptor
were computed within each tumor subcompartment, yielding
1264 statistical features per region (enhancing tumor, peritu-
moral FLAIR hyperintensity, and necrosis) per the MR imaging
protocol. When statistical features were concatenated across all
3 MR imaging sequences (Gd-T1w, T2w, and FLAIR), a total of
3792 texture features were obtained for analysis from each tu-
mor subcompartment. Additionally, to identify stable features
across multiple sites, we extracted 3792 statistical features from
the nontumor brain parenchyma (mirroring the tumor mask
on the opposite brain hemisphere). Following feature extrac-
tion, z score feature normalization21 was applied to ensure that
radiomic features extracted from different sites lie within a
comparable range of values for leave-one-site-out (LOSO) anal-
ysis. The mean and standard deviation (SD) feature values
obtained from the training data were further used to apply z
score normalization on the independent holdout validation set.

Computation of Feature Instability across Sites. As described in
Leo et al,13 the PI uses a statistical t test to compare the number of
feature distributions that are significantly different across data sets
from different sites. The PI score ranges between 0 and 1 with a
high PI score for a feature representing low stability across site-
specific variations, while a low PI score (closer to 0) indicates that
the feature may not be affected by acquisition variations and is likely
stable across sites.13

Table 1: Summary of patient demographics and the most commonly varying MR parameters across our cohort curated from 5
different sites (S1–S5)

Imaging Source Site

S1, MD Anderson
Cancer Center,
Houston, Texas

S2, Ivy
Glioblastoma Atlas

Project

S3, Henry Ford
Hospital, Detroit,

Michigan

S4, University of
California, San

Francisco, California
S5, Cleveland
Clinic, Ohio

No. of cases 17 33 28 15 57
Magnetic field strength
1.5T 11 9 16 14 48
3T 6 24 12 1 9

Sex
Female 7 17 5 6 23
Male 10 16 23 9 34

Scanner
GE Healthcare 17 30 28 15 57
Siemens 0 3 0 0 0

Slice thickness (range) (mm) 6.5 0.9–6.5 1–6 1.5–6 0.9–7.5
Pixel spacing (range) (mm) 0.47–0.86 0.43–1.05 0.43–0.94 0.45–1.02 0.23–1
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Statistical Analysis
To perform a rigorous evaluation of feature stability across sites,
our multi-institutional GBM cohort was segregated into 3 groups:
training set (T̂), validation set (VS), and test set (TS) (Fig 2). Using
these 3 groups, we assessed radiomic feature stability across sub-
compartments of the tumor and its associated habitat, individual
imaging protocols (Gd-T1w, T2w, and FLAIR), and common
sources of variance in MR imaging parameters (magnetic strength,
pixel spacing, slice thickness). Specifically, we used sites S1–S4 in a
LOSO fashion so that studies from 3 sites at a time consisted of T̂
where i [ (1,...,4), while studies from the remaining fourth site
were used as VSi. Finally, the TS consisted of studies obtained from
our hold-out site (Cleveland Clinic Foundation), which was used
for independent evaluation. For every training set T̂, i [ (1,...,4), we
computed the PI score to measure the variability in radiomic fea-
ture values engendered due to acquisition variations across the 3
sites within the T̂. The features with PI. 0 indicated that they
were significantly different in the nontumor regions across differ-
ent sites in the TS and hence were excluded from further analysis.
After this triage, the remaining stable feature set was used to iden-
tify the most discriminatory features using minimum redundancy
maximum relevance (mRMR) feature selection within a linear dis-
criminant analysis classifier across 100 iterations of bootstrapping.

This LOSO analysis was performed separately for each of the 3
tumor subcompartments (enhancing tumor, peritumoral hyperin-
tensity, necrotic core) to identify the most stable and discriminatory
features from the training set for every MR imaging protocol
(Gd-T1w, T2w, and FLAIR). The average area under the curve
(AUC) across different iterations of LOSO was used to obtain dis-
criminability values in identifying poor and improved survival
across each of the tumor subcompartments. Furthermore, for each
tumor subcompartment, we concatenated and rank-ordered stable
and discriminatory features in terms of their frequency of occur-
rence across 400 trials (100 bootstrapped iterations across 4 runs of
LOSO evaluation as shown in Fig 2) of cross-validation run on our
training set. The 5 most-frequently selected features using T̂ and VS
were obtained and evaluated on the TS for their efficacy in distin-
guishing poor from improved survival in GBMs using the AUC
and accuracy measures. Additionally, for comparison, we selected
radiomic features using only minimum Redundancy–Maximum
Relevance (discriminatory features) without inclusion of the PI

metric for feature pruning. We per-
formed the LOSO runs on discrimina-
tory features using a linear discriminant
analysis classifier to evaluate their per-
formance (for distinguishing poor and
improved survival) in terms of the AUC
and accuracy on our hold-out validation
set.

Lastly, we interrogated the feature
distributions of stable and discrimina-
tory radiomic features and compared
them with discriminatory features using
box-and-whisker plots. Specifically, the
comparisons were made using the
Wilcoxon rank-sum test in the context
of evaluating variability in feature distri-

butions across 3 commonly varying MR imaging parameters: 1)
slice thickness (#2mm, 2–5mm, $5mm), 2) pixel spacing
(,0.5mm, $0.5mm), and 3) magnetic field strength (1.5T versus
3T), across our multi-institutional cohort.

RESULTS
Experiment 1: Assessing the Stability of Radiomic Features
across Different Subcompartments of the Tumor and Its
Associated Habitat
Figure 3A–C shows 2D scatterplots of discriminability (average
AUC on the y-axis) versus instability (PI on the x-axis), where
each data point in the 2D space corresponds to 1 of the 3792
radiomic features across every tumor subcompartment (necrosis,
enhancing tumor, and FLAIR hyperintensity, respectively). The
size of the data point on the scatterplot was used to represent the
SD in AUC values for a specific feature across different LOSO
runs. Our results suggested that the features with PI closer to zero
also had a consistent diagnostic performance (in terms of AUC
values) across sites as evident from the small size of the data
points (reflecting a small deviation in the AUC) in Fig 3. The top
5 most frequent stable and discriminatory radiomic features per
subcompartment selected using LOSO subexperiments are listed
in Table 2.

Figure 4 illustrates the AUC values for training (T̂1–T̂4) and
validation (VS1–VS4) cohorts using the top 5 stable and discrimi-
natory radiomic features versus discriminatory features alone
(without inclusion of the stability metric) from each of the 3
tumor subcompartments using LOSO analysis. Confidence inter-
vals derived from across the bootstrapped experiments for the
AUC values in the training set are available in the Online
Supplemental Data. The AUC values on the training set did not
show much improvement between stable and discriminatory and
discriminatory classifiers.

However, on the validation set (VS1–VS4), the compartment-
specific linear discriminant analysis classifiers trained using the
top 5 stable and discriminatory radiomic features yielded at least
5%–10% improvement in AUC values (0.78, 0.64, 0.66, 0.71 for
VS1–VS4 respectively), compared with the linear discriminant
analysis classifiers trained using discriminatory features alone
(0.57, 0.51, 0.52, 0.32 for VS1–VS4, respectively) in the enhancing
tumor and T2/FLAIR hyperintensity subcompartments (0.76,

FIG 2. The strategy used for segregating our cohort into training (T̂1 –T̂4), validation (VS1–VS4), and
TSs. The training and the validation sets were created using the LOSO scheme.
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0.69, 0.73, 0.77 using stable and discriminatory features compared
with 0.51, 0.59, 0.53, 0.70 from discriminatory features alone
across VS1–VS4). For the necrosis subcompartment, the AUC
values for VS were identified as 0.68, 0.52, 0.58, and 0.75 using
discriminatory-alone across VS1–VS4 and 0.69, 0.68, 0.73, and
0.70 for stable and discriminatory features, respectively.

Our compartment-specific classifiers trained using the top 5
stable and discriminatory radiomic features yielded AUCs of 0.71,
0.73, and 0.76, while discriminatory-alone features yielded AUCs
of 0.65, 0.54, and 0.62 for necrotic core, enhancing tumor, and
FLAIR hyperintensities, respectively, on the hold-out testing
cohort. Additionally, combining stable and discriminatory features
from across the tumor habitat yielded an AUC of 0.78 compared

with using discriminatory features alone, which yielded an AUC of
0.69 on the hold-out test set.

Experiment 2: Assessing the Stability of Radiomic Features
across Individual Imaging Protocols (Gd-T1w, T2w, and
FLAIR)
Figure 3D shows stacked barplots corresponding to the total
number of features (basic set) along with the proportion of fea-
tures that were identified as cross-site stable with a PI¼ 0 (stabil-
ity-informed set) from each feature family across Gd-T1w, T2w,
and FLAIR sequences. Of a total of 3792 features for every proto-
col (1264 features per subcompartment), a total of 240 features
from Gd-T1w, 302 features from T2w and 306 features from

FIG 3. 2D plots of discriminability (average AUC, y-axis) versus instability (PI score, x-axis) for each tumor subcompartment (A, Necrosis. B,
Enhancing tumor. C, T2/FLAIR hyperintensity). Each radiomic feature is shown as a bubble where its size represents the SD between the AUC
values across different LOSO runs. D, The stacked barplot of the total number of extracted features, the features that were identified as stable
(PI ¼ 0) from across different feature families per MR imaging sequence (Gd-T1w, T2w, and FLAIR), and the overlapping stable features across
multiparametric MR imaging sequences. Different colors represent different feature families.
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FLAIR were found to be stable (using PI ¼ 0) across the studies
from the training set (T̂) sets. While �20% of features from every
feature family were identified as stable across all the 3 MR imag-
ing protocols, the greatest number of stable features was found to
belong to Laws, CoLlAGe, and Gabor feature families (Online
Supplemental Data).

Experiment 3: Assessing the Radiomic Stability across
Common Sources of Variance in MR Imaging Parameters
(Magnetic Strength, Pixel Resolution, Slice Spacing)
Figure 2 demonstrates the boxplots representing feature distri-
butions for a stable and discriminatory radiomic feature
(CoLIAGe sum average feature) along with a corresponding dis-
criminatory feature (Haralick info2), both extracted from
enhancing tumor of FLAIR MR imaging across test sets, dicho-
tomized across different slice thicknesses (millimeter):#2, (n ¼
34), and .2 (n ¼ 23). Similarly, Fig 3A, -B and Fig 4 represent
feature distributions of the corresponding features acquired at
different pixel spacing categorized such as , 0.5 (n ¼ 16) and
$0.5mm (n ¼ 41), as well as across different magnetic
strengths (1.5T [n ¼ 48] versus 3T [n ¼ 9]), respectively. We
observed the range and median values of stable and discrimina-
tory radiomic features at different slice thicknesses, pixel spac-
ing, and magnetic strengths to be more consistent (Online
Supplemental Data) than the feature distributions obtained for
discriminatory features (Online Supplemental Data). Similarly,
we observed statistically significant separations (demonstrated
with asterisks in the boxplots of Online Supplemental Data) in
feature distributions between poor and improved survivors for
stable and discriminatory radiomic features, compared with the
discriminatory features, across slice thicknesses, pixel spacing,
and magnetic strength variations in our training and testing
cohorts.

DISCUSSION
Estimation of PFS often serves as a surrogate marker for predict-
ing therapeutic efficacy in GBM tumors. Previous approaches
have investigated radiomic features extracted from different sub-
compartments of the tumor habitat (constituting necrotic core,
enhancing tumor, and T2/FLAIR hyperintensity subcompart-
ments) on routine MR imaging in prognosticating PFS in patients
with GBM. However, most of these studies do not explicitly take
into account the sensitivity of radiomic features to site- and scan-
ner-specific variations in MR imaging parameters, including
variations in slice thicknesses, image contrast, voxel resolutions,
and magnetic field strengths, which ultimately impact the gener-
alizability and clinical applicability of these approaches.

More recently, a few approaches have focused on identifying
stable and discriminatory features (using preparation-induced
instability score13) across multi-institutional studies in the context
of other tumor sites (lung,14 prostate13,15,16). Our work leveraged
a similar approach to identify radiomic features that are stable as
well as discriminatory of poor- and improved-survival groups in
the context of brain tumors. To rigorously evaluate the reproduci-
bility of our selected radiomic features, we performed a compari-
son of stable and discriminatory features with discriminatory-
alone features in a LOSO fashion (across 4 training sites) for
distinguishing poor and improved GBM survivors on the basis of
their PFS. This analysis was performed across each of the tumor
subcompartments of the tumor habitat on routine multiparamet-
ric pretreatment MR imaging scans (Gd-T1w, T2w, FLAIR).
Lastly, for each tumor subcompartment, the most frequent stable
and discriminatory radiomic features in the training set were used
to risk-stratify patients with GBM into poor and good survi-
vors on an independent cohort obtained from a collaborating
institute (Cleveland Clinic). Our findings on training and test

Table 2: A list of the top 5 features identified to reliably differentiate poor from improved survival in patients with GBM from the
training set for every tumor subcompartment (necrosis, enhancing tumor, peritumoral T2/FLAIR hyperintensity, and nonenhancing
tumor)

No. Feature Family Descriptor Window Size MRI Sequence Statistic
Top 5 features selected from necrosis
1 Laws Edge-edge-level 5 T1 Skewness
2 Laws Level-level-level 3 T1 Skewness
3 Laws Wave-wave-level 5 FLAIR Median
4 CoLIAGe Sum variance 3 FLAIR Skewness
5 CoLIAGe Sum variance 3 FLAIR Kurtosis

Top 5 features selected from
enhancing tumor
1 CoLIAGe Sum average 3 T2 Median
2 CoLIAGe Sum average 5 T2 Median
3 CoLIAGe Energy 3 FLAIR Median
4 CoLIAGe Sum average 3 FLAIR Median
5 Laws Spot-level-ripple 5 T1 Skewness

Top 5 features selected from edema
and nonenhancing tumor
1 Laws Level-edge-level 5 T1 Median
2 CoLIAGe Sum variance 5 T2 Variance
3 CoLIAGe Sum variance 5 T2 Skewness
4 Haralick Sum entropy 5 FLAIR Skewness
5 Gabor –u ¼ 1.178, XZ –u ¼ 0,

l ¼ 1.482, BW¼ 1
5 T2 Kurtosis

Note:—BW indicates bandwidth.
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sets are in line with those in previous work,13,14 in which the
use of PI score within feature selection allowed building
improved diagnostic and prognostic classifiers using stable
and discriminatory features.

In the context of GBM prognosis, a few studies that have inter-
rogated variations in radiomic features have focused on the

reproducibility across segmentations of the tumor obtained from
across different experts/institutions9,12,17,18 or, in terms of repeat-
ability, using test-retest studies.12 For instance, Tixier et al17

explored the robustness of radiomic features extracted from the
TCGA-GBM data set of 90 studies across segmentations obtained
from different experts. They reported that the features computed

FIG 4. Barplots showing training and validation AUCs to distinguish patients with improved and poor outcomes using the top 5 stable and dis-
criminatory radiomic versus discriminatory-only features. Blue barplots depict the AUC values using discriminatory features, while orange bars
represent AUC values using stable and discriminatory radiomic features from the respective training and validation cohorts.
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from the histogram and co-occurrence matrices were the most ro-
bust with an intraclass correlation coefficient value of $0.8.
Similarly, Lee et al22 compared radiomic features (textural, morpho-
metric, and first-order) across segmentations of the tumor habitat
obtained from 2 semiautomated segmentation software programs
on 45 studies and identified the first-order statistic-feature family
(across all 3 tumor subcompartments) to be the most stable across
the automated segmentations. In a recent study, Shiri et al12 eval-
uated the repeatability of radiomic features across 17 patients with
GBM using T1- and T2-weighted MR imaging scans obtained
within the same imaging unit on 2 consecutive days. By means of
the intraclass correlation coefficient, the study demonstrated that
the textural features from the gray-level run length matrix and
gray-level dependence matrix were highly repeatable (intraclass cor-
relation coefficient, .95%) with respect to image preprocessing,
different image-registration algorithms, and test-retest analysis.
Similar features, including difference variance, inverse different
moment, fraction, and long- and short-run emphasis were found to
be highly reproducible among different field sizes and phantom
positions in Rastegar et al.23 In Suter et al,24 the authors applied
multiple perturbations, including variability in the imaging proto-
cols (voxel size and axial slice spacing), artificial deformation in the
segmentation labels, k-space subsampling on MR imaging, and
selected robust features based on the intraclass correlation coeffi-
cient from a single site. Selected robust features along with machine
learning classifiers evaluated on multicenter data demonstrated an
improvement in the prognostic power of the models compared
with the machine learning classifiers trained with nonrobust
features.

Our work is different from previous related studies25-29 in a few
ways. First, our work presented the first approach in the context of
GBM tumors to jointly explore the stability and discriminability of
radiomic features. Our results suggest that the radiomic features
from T2/FLAIR hyperintensity are the most stable and discrimina-
tory across different tumor subcompartments. Second, we carefully
interrogated a set of stable features from across different MR imag-
ing sequences (Gd-T1w, T2w, FLAIR). Finally, we leveraged retro-
spective MR imaging scans acquired from 5 different institutions
to build a robust prognostic classifier that incorporated both stable
and discriminatory features. Uniquely, we demonstrated that fea-
ture distributions across different slice thicknesses, pixel spacing,
and magnetic field strengths were more consistent across stable
and discriminatory radiomic features than the feature distributions
obtained for the discriminatory features.

While the performance accuracy across stable and discrimina-
tory features was similar to that of discriminatory features alone
on the training set, there are 2 key points worth noting: 1) The
model trained on stable and discriminatory was robust to the vari-
ability in training data because the SD of the AUC values was
much higher for discriminatory-alone compared with stable and
discriminatory features (Online Supplemental Data). 2) We
observed an improvement in AUC values on the independent
hold-out test set, suggesting that the model trained on stable and
discriminatory features may be more generalizable and hence
more amenable to providing reliable AUC assessments on the
hold-out set, compared with the model trained on discriminatory
features alone.

Our work did have some limitations. While our analysis
included 150 patients from 5 different institutions, it was limited
to a small cohort of studies per site. The retrospective nature of
our cohort led to an unequal number of patients per site, which
may have further impacted our analysis of radiomic variations in
slice thickness, pixel spacing, and magnetic strengths across sites.
Notably, our model yielded the lowest AUCs when validated on
VS2 (the Ivy Glioblastoma Atlas Project cohort). A possible reason
may be the high variability in acquisition parameters across scan-
ners (GE Healthcare and Siemens), variations in themagnetic field
strength, and a high range of slice thicknesses (0.9–6.5mm) and
pixel spacing (0.43–1.05mm), compared with data sets from the
other cohorts. Additional work is warranted to rigorously validate
the reproducibility of the identified features across multiple differ-
ent imaging parameters on a much larger multisite cohort. We
will additionally also investigate the repeatability of the radiomic
features from across the tumor habitat via a prospectively col-
lected test-retest study for the GBM cohort.

CONCLUSIONS
Our approach demonstrated that the radiomic features from the
T2/FLAIR hyperintentensity subcompartment were the most sta-
ble and discriminatory of PFS in GBM tumors compared with the
features from enhancing tumor and necrotic core. Identification of
stable and discriminatory radiomic features across multisite multi-
parametric MR imaging (Gd-T1w, T2w, FLAIR) sequences from
within the tumor and its associated habitat may yield robust prog-
nostic classifiers for patient survival in GBM tumors.
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