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ORIGINAL RESEARCH
EXTRACRANIAL VASCULAR

Proximal Region of Carotid Atherosclerotic Plaque Shows
More Intraplaque Hemorrhage: The Plaque at Risk Study

G.A.J.C. Crombag, M. Aizaz, F.H.B.M. Schreuder, F. Benali, D.H.K. van Dam-Nolen, M.I. Liem, C. Lucci,
A.F. van der Steen, M.J.A.P. Daemen, W.H. Mess, A. van der Lugt, P.J. Nederkoorn, J. Hendrikse, P.A.M. Hofman,

R.J. van Oostenbrugge, J.E. Wildberger, and M.E. Kooi

ABSTRACT

BACKGROUND AND PURPOSE: Intraplaque hemorrhage contributes to lipid core enlargement and plaque progression, leading to
plaque destabilization and stroke. The mechanisms that contribute to the development of intraplaque hemorrhage are not com-
pletely understood. A higher incidence of intraplaque hemorrhage and thin/ruptured fibrous cap (upstream of the maximum steno-
sis in patients with severe [$70%] carotid stenosis) has been reported. We aimed to noninvasively study the distribution of
intraplaque hemorrhage and a thin/ruptured fibrous cap in patients with mild-to-moderate carotid stenosis.

MATERIALS AND METHODS: Eighty-eight symptomatic patients with stroke (,70% carotid stenosis included in the Plaque at Risk
study) demonstrated intraplaque hemorrhage on MR imaging in the carotid artery plaque ipsilateral to the side of TIA/stroke. The
intraplaque hemorrhage area percentage was calculated. A thin/ruptured fibrous cap was scored by comparing pre- and postcon-
trast black-blood TSE images. Differences in mean intraplaque hemorrhage percentages between the proximal and distal regions
were compared using a paired-samples t test. The McNemar test was used to reveal differences in proportions of a thin/ruptured
fibrous cap.

RESULTS:We found significantly larger areas of intraplaque hemorrhage in the proximal part of the plaque at 2, 4, and 6mm from
the maximal luminal narrowing, respectively: 14.4% versus 9.6% (P¼ .04), 14.7% versus 5.4% (P, .001), and 11.1% versus 2.2% (P¼ .001).
Additionally, we found an increased proximal prevalence of a thin/ruptured fibrous cap on MR imaging at 2, 4, 6, and 8mm from
the MR imaging section with the maximal luminal narrowing, respectively: 33.7% versus 18.1%, P¼ .007; 36.1% versus 7.2%, P, .001;
33.7% versus 2.4%, P¼ .001; and 30.1% versus 3.6%, P¼ .022.

CONCLUSIONS: We demonstrated that intraplaque hemorrhage and a thin/ruptured fibrous cap are more prevalent on the proxi-
mal side of the plaque compared with the distal side in patients with mild-to-moderate carotid stenosis.

ABBREVIATIONS: FC ¼ fibrous cap; IPH ¼ intraplaque hemorrhage; QIR TSE ¼ quadruple inversion recovery turbo spin-echo; TRFC ¼ thin/ruptured fibrous cap

Rupture of a vulnerable atherosclerotic plaque is an impor-
tant underlying cause of myocardial infarction and stroke.1

Noninvasive visualization of plaque vulnerability has demon-
strated that intraplaque hemorrhage (IPH) contributes to
enlargement of the lipid core and plaque progression, leading
to plaque destabilization.2,3 Indeed, we and others have

demonstrated that IPH on MR imaging is a strong predictor of
future cerebrovascular events.4-6 This finding has led to the rec-
ognition of IPH as a key marker and pathologic factor contrib-
uting to plaque vulnerability.
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However, the underlying mechanisms of IPH development are
not completely understood. Most often, leakage of erythrocytes
from intraplaque microvessels is proposed as a cause for IPH.7,8 In
contrast, we recently observed fewer microvessels in plaques with
IPH,9 suggesting that damage to the plaque luminal surface such as
fissures and rupture of the fibrous cap (FC) could contribute to
IPH.8,10 It was demonstrated in histologic specimens that IPH
occurs more frequently in the proximal part of the plaque,11,12

where the biomechanical wall stress is usually higher,13-16 due to
arterial pressure wave reflection. In a histopathologic study, we
demonstrated that IPH occurred in regions with FC fissures and
juxtaluminal calcifications. Juxtaluminal calcifications may lead to
increased biomechanical wall stress.17 Fissures were found in 58%
of plaques with grossly intact luminal surfaces. Most of the fissures
(88%) occurred in the proximal region of the plaque. The fissures
were connected to IPH (92%) and calcifications (43%), while they
were connected to microvessels in only 25% of cases.17

Previous histologic studies were dependent on patient popula-
tions that underwent carotid endarterectomy, usually patients
with severe carotid stenosis. MR imaging allows investigation of
carotid plaques, even in patients with a lower grade of stenosis in
which the arterial pressure wave reflection will be less severe.18-20

This study aimed to investigate, noninvasively, whether there is
a difference in volume of IPH and the status of the FC in the proxi-
mal-versus-distal regions in a relatively large group of patients
with stroke with mild-to-moderate carotid stenosis and IPH.

MATERIALS AND METHODS
Study Design
Baseline MR imaging data were analyzed from patients included
in the Plaque at Risk (PARISK) study that demonstrated IPH.
PARISK is a large, prospective, multicenter cohort study investigat-
ing whether plaque imaging enables us to better identify patients
with carotid stenosis who have an increased stroke risk.21 Patients
with a recent (,3months) TIA or ischemic stroke in the anterior
circulation and carotid artery plaque of.2 mm but,70% stenosis
ipsilateral to the side of TIA/stroke were prospectively included. The
degree of stenosis was determined with Doppler sonography or with
CTA. An upper cutoff value of 70% was used on the basis of the
NASCET criteria.22 Institutional medical ethical committee approval
was obtained, and all patients provided written informed consent.

MRI
The MR imaging protocol has been described in detail
previously.21

In brief, multisequence carotid MR imaging was performed on
a 3T whole-body scanner (Achieva or Ingenia, Philips Healthcare,
or Discovery MR 750, GE Healthcare). A dedicated 8-channel
phased-array coil (Shanghai Chenguang Medical Technologies) or
a 4-channel carotid coil (PACC-ST30, Machnet B.V. Roden, the
Netherlands) was used. Dedicated vessel wall image-analysis soft-
ware (VesselMass; Leiden University Medical Center, the
Netherlands) was used to analyze the MR images of the ipsilateral
carotid plaque. After an extensive training period and demonstrat-
ing good interobserver agreement with a validation set that was
previously delineated in consensus by experts (with .7
and.10 years of experience, respectively), the trained observers

manually delineated the outer vessel wall, luminal area, and plaque
components as previously described.23 Image quality was rated on
a 5-point scale.24 Patients were excluded if the mean image quality
score was,2.

The vessel wall and luminal area were delineated on the pre-

contrast T1-weighted double inversion recovery FSE images

(center 2) or the quadruple inversion recovery turbo spin-echo

(QIR TSE) (center 1, 3, and 4) images. IPH delineation was per-

formed on T1-weighted inversion recovery turbo field echo

images (center 1, 3, and 4) or 3D T1-weighted fat-suppressed

spoiled gradient-echo images (center 2).
IPH was delineated by visual observation and was defined as

hyperintense signal within the bulk of the plaque compared with
the adjacent sternocleidomastoid muscle and was manually
delineated per section by the trained observers. FC status was
dichotomized as thick versus thin or ruptured.25 When a contin-
uous signal enhancement on the postcontrast images between the
lipid rich necrotic core and the lumen was identified, the FC sta-
tus was classified as “intact and thick.” When no or an inter-
rupted area of enhancement was identified, the FC status was
classified as “thin and/or ruptured.” In slices without a lipid rich
necrotic core, there is no interrupted area of signal enhancement;
therefore, the status of the FC is scored by definition as “intact
and thick” (Fig 1).

Previously, we have shown that our method of scoring IPH
demonstrated good agreement between MR imaging and histol-
ogy.26 Interobserver reproducibility for the detection of IPH was
very good (k ¼ 0.86). We also demonstrated an overall very good
interobserver reproducibility of MR image analysis (for carotid

FIG 1. Transversal MR images of carotid plaque in the right carotid ar-
tery. We acquired the following MR images: precontrast T1-weighted
QIR TSE (A), postcontrast T1-weighted QIR TSE (B), T1-weighted inver-
sion recovery turbo field echo (C). D, The same image as in B, includ-
ing the contours delineating intraplaque hemorrhage and the inner
and outer vessel wall: white ¼ lumen, gray ¼ outer vessel wall,
black ¼ intraplaque hemorrhage. C, A hyperintense signal in the bulk
of the plaque can be clearly observed, indicating the presence of
intraplaque hemorrhage (black asterisk). B, An interruption of the sig-
nal enhancement adjoining the lumen can be observed, indicating a
TRFC (white arrow).
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lumen volume, wall volume, and total vessel volume: intraclass
correlation coefficient/coefficient of variation ¼ 0.96/7.7%, 0.95/
8.8%, and 0.92/12.8%, respectively).27 Interobserver reproducibil-
ity of FC status assessment was good (k ¼ 0.60–0.71).28 Also, we
have previously shown a very good overall interscan/intraobserver
reproducibility in a study in which patients were scanned twice
within a mean of 4 (SD, 2.9) days (for carotid lumen volume and
wall volume: intraclass coefficient/coefficient of variation ¼ 0.99/
7.2% and 0.99/7.1%, respectively).27 The interscan/intraobserver
reproducibility for the detection of IPH and FC status were very
good (k ¼1.00).27 On the basis of these delineations, the dedicated
vessel wall imaging software package automatically calculates the
luminal and vessel wall area and the areas of each plaque component
per section. Using the vessel wall and IPH areas, we calculated the
percentage of IPH of the total vessel wall area per section. Starting at
the section with the narrowest lumen, the IPH area and the presence
of a thin/ruptured fibrous cap (TRFC) were determined for the
neighboring proximal and distal slices at an interval of 2mm (ie, the
MR imaging section thickness) (Fig 2).

Plaque Composition in Proximal-versus-Distal Regions
The proximal region of the plaque is defined as the region proxi-
mal to the imaging section with the narrowest lumen (lumen
with the absolute lowest area based on luminal contour). The ves-
sel wall area was calculated for each MR imaging section. We
generated a histogram of the distribution of the mean IPH area
percentage. In addition, we also calculated differences in absolute
areas of IPH between the proximal and distal parts of the plaque.
The distribution of MR imaging slices with a TRFC at each MR
imaging section position proximal and distal to the MR imaging
section with the narrowest lumen was also assessed. Section

positions with data from ,25 patients
are excluded in these histograms
because of the small statistical power.

Statistical Analyses
Statistical analyses were performed
using SPSS 24.0 (IBM). A P value , .05
was considered statistically significant.
To analyze the differences between
proximal and distal areas of IPH, we
used a paired t test to compare the slices
proximal (–n) and distal (1n) to the
section with the narrowest lumen (ie,
Section 0). The paired t test was also
used to test the overall difference in
absolute IPH area between the proximal
and distal regions. A McNemar test was
used to analyze differences in propor-
tions of the FC status between the proxi-
mal and distal slices, per section and
overall per patient.

RESULTS
Of 244 included patients, 6 patients
withdrew from the study. Of the
remaining 238 patients, another 14

patients were excluded due to bad quality scores of the MR imag-
ing (n¼ 4), incomplete MR imaging protocol (n ¼ 2), or absence
of MR imaging data due to claustrophobia (n¼ 6) or obesity
(n¼ 2). Of the remaining 224 patients, 88 patients (39%) demon-
strated IPH on the ipsilateral side. Baseline patient characteristics
are shown in the Online Supplemental Data. For the analysis of
the FC status, another 5 patients were excluded because no post-
contrast MR imaging was available (Online Supplemental Data).

The mean IPH area percentage was significantly larger in the
proximal part of the plaque (Fig 3A). The largest mean IPH area
percentage is observed 4mm proximal to the narrowest lumen.
The proximal-versus-distal area percentages of IPH are at 2, 4, and
6mm from the narrowest lumen, respectively: 14.4% versus 9.6%
(P¼ .04), 14.7% versus 5.4% (P, .001), and 11.1% versus 2.2%
(P¼ .001). The MR images at 8 and 10mm from the narrowest
lumen also show a higher mean area percentage of IPH proximal
compared with distal; however, this difference was not significant
(7.5% versus 2.2%, P¼ .056; 5% versus 1.1%, P¼ .077) (Table 1).
Also, the absolute IPH area in the proximal region was significantly
higher compared with the distal region at 2, 4, 6, 8, and 10mm
from the narrowest lumen, respectively (0.11 versus 0.07 cm2,
P¼ .019; 0.12 versus 0.04 cm2, P, .001; 0.10 versus 0.01 cm2,
P, .001; 0.06 versus 0.01 cm2, P¼ .005; and 0.03 versus 0.0003
cm2, P¼ .004).

In these patients with IPH, 76% demonstrated a TRFC. The
proximal region of the plaque in patients with IPH showed a
higher prevalence of a TRFC compared with the distal region at
2, 4, 6, and 8mm from the MR imaging section with the narrow-
est lumen, respectively: 33.7% versus 18.1%, P¼ .007; 36.1% ver-
sus 7.2%, P, .001; 33.7% versus 2.4%, P¼ .001; and 30.1% versus

3.6%, P¼ .022. At 10mm from the narrowest lumen, the

FIG 2. A patient’s dataset acquired with an inversion recovery turbo field echo sequence.
Delineation of the inner and outer vessel walls and IPH in every 2-mm-thick MR imaging section
proximal and distal to the section with the narrowest lumen (0mm). Gray outline ¼ outer vessel
wall, white outline¼ inner vessel wall, black outline¼ IPH, white arrow (�6mm to12mm)¼MR
imaging slices in which the FC status is scored as thin or ruptured. The status of the FC was deter-
mined by using the postcontrast T1-weighted QIR TSE sequence. There is a larger volume of IPH at
the proximal side of the section with the narrowest lumen (0mm), and most of the slices with a
TRFC cap are also located at the proximal side.
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prevalence of a TRFC was also higher in the proximal region;

however, it was not significant (19.3% versus 0%; P=1.0) (Table

2). Overall, 66 (75%) patients demonstrated a TRFC on the proxi-

mal side, while this number was 19 (22%) on the distal side

(P, .001) (Fig 3B).
To investigate whether the position of the stenosis rela-

tive to the carotid bifurcation affects the distribution of
intraplaque hemorrhage, we divided the patients into 2
groups, ie, 50% of the patients with the most distal position
of the stenosis and 50% of the patients with the most proxi-
mal position. The median difference in the position of the
narrowest lumen with respect to the bifurcation was 10 mm

between these 2 groups. Both groups showed more IPH at
the proximal side of the carotid plaque (data not shown).

DISCUSSION
The present study demonstrates larger mean IPH areas on the
proximal region compared with the distal region of carotid plaques
assessed with MR imaging in patients with TIA and stroke with
mild-to-moderate carotid artery stenosis. Additionally, we found
that TRFCs are more frequently located in the proximal region.

The higher prevalence of a TRFC on the proximal side of the pla-
ques was also reported in a previous study with symptomatic and
asymptomatic individuals.29 This could be caused by differences in

FIG 3. A, Histogram showing significantly larger mean IPH areas in the proximal region of the plaque compared with the distal region. Mean IPH
area percentages are shown for each section in relation to the smallest lumen. The white bar indicates the section with the narrowest lumen
(distance = 0mm), the bars on the left with the negative numbers are slices proximal (proximally), and the bars on the right with the positive
numbers indicate the slices distal to the smallest lumen. Each section has a thickness of 2mm. An asterisk indicates a statistically significant dif-
ference (P, .05) between the proximal and distal slices using a paired t test. B, Prevalence of a TRFC plotted for each section position with
respect to the section with the smallest lumen (0). The bars on the left with the negative numbers are slices proximal, and the bars on the right
with the positive numbers indicate the slices distal to the smallest lumen. An asterisk indicates a statistically significant difference (P, .05)
between the proximal and distal slices using a McNemar test.

Table 1: Differences in mean IPH area (% of total vessel wall) between proximal and distal regions

Longitudinal Distance
from Section with

Smallest Lumen (mm)

No. of Slices Where
Proximal and Distal

Sections Are Available

Mean % IPH with
Respect to Total Vessel

Wall Area in the
Proximal Region

Mean % IPH with
Respect to Total Vessel
Wall Area in the Distal

Region P Value
2 66 14.4 (SD, 1.9) 9.6 (SD, 2.1) .040
4 59 14.7 (SD, 1.7) 5.4 (SD, 1.8) ,.001
6 45 11.1 (SD, 1.6) 2.2 (SD, 1.3) .001
8 39 7.5 (SD, 1.5) 2.2 (SD, 1.5) .056
10 34 5.0 (SD, 1.4) 1.1 (SD, 1) .077

Table 2: Differences in prevalence of a TRFC between proximal and distal regions
Longitudinal Distance
from Section with

Narrowest Lumen (mm)

No. of Slices Where
Proximal and Distal

Sections Are Available
TRFC (No.) (%)
Proximal Region

TRFC (No.) (%)
Distal Region P Value

2 63 28 (33.7) 15 (18.1) .007
4 56 30 (36.1) 6 (7.2) ,.001
6 43 28 (33.7) 2 (2.4) .001
8 38 25 (30.1) 3 (3.6) .022
10 33 16 (19.3) 0 (0) 1.0
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the wall stress and wall shear stress between the upstream and
downstream parts of the plaque. Similarly, increased prevalence of
ulcerations in the proximal region of the carotid atherosclerotic pla-
que has been reported.30,31 The increased prevalence of a TRFC on
the proximal side could be related to the increased amount of intra-
plaque hemorrhage in this region because IPH might also develop
from the luminal side via fissures or rupture of the FC.17 A previous
PARISK substudy has shown an association between the disrupted
plaque surface and intraplaque hemorrhage onMR imaging.10

Previously, Fagerberg et al11 also described a higher incidence of
severe carotid atherosclerotic lesions (containing IPH, macrophages,
TRFC) proximal compared with distal in histopathologic specimens.
Their population consisted of 40 patients scheduled for carotid end-
arterectomywith severe stenosis, while patients included in our anal-
ysis had a mild-to-moderate stenosis. Yilmaz et al29 and Dirksen et
al32 also demonstrated significantly more macrophages and rupture
sites at the proximal side in patients with carotid stenosis who
underwent carotid endarterectomy. Yilmaz et al found an equal
prevalence of intraplaque hemorrhage between the proximal and
distal regions (22% versus 23%) in their study of symptomatic and
asymptomatic patients with carotid endarterectomy with .70% ca-
rotid stenosis.29 However, they did not investigate differences in the
area of IPH. Our results also demonstrate that in a group of patients
with a mild-to-moderate degree of stenosis in which the arterial
pressure wave reflection is less severe, the proximal region still shows
significantly more IPH. Thus, also in this population, biomechanical
or hemodynamic factors may relate to IPH.

The larger areas of IPH on the proximal part of the plaque may
be related to differences in wall stress, which is often increased in
the proximal part of the plaque13-16 due to arterial pressure wave
reflection at the stenosis. The local blood pressure is typically 3
orders of magnitude larger than wall shear stress33 and, therefore,
is the dominant factor for plaque deformation and plaque rup-
ture.34 A large population study, eg, the Rotterdam Study, demon-
strated that pulse pressure, the driving force for plaque
deformation, is the strongest determinant of IPH, independent of
cardiovascular disease risk factors and other blood pressure com-
ponents.35 Plaque deformation could lead to local tissue damage
such as fissures in the FC or rupture of microvessels, causing devel-
opment or progression of IPH. Most interesting, population stud-
ies also showed that pulse pressure is an independent predictor of
coronary heart disease,35 cardiovascular mortality in men,36 multi-
ple adverse cardiovascular outcomes,37 and stroke.38 The latter
meta-analysis demonstrated that a relatively small increase in pulse
pressure (10mm Hg) was associated with the occurrence of
stroke.38 Therefore, studies have recently been advocated to assess
therapies targeted at a reduction of pulse pressure.38

Previous studies have assessed plaque biomechanics using com-
putational models with inherent assumptions. Most of these stud-
ies focused on plaque rupture rather than IPH development.39,40

Huang et al41 showed that by using an image-based computational
model in 5 patients, the IPH is associated with higher structural
wall stress. Teng et al42 demonstrated that by using a numeric
model based on 4 surgery specimens, local tissue deformations
were larger around microvasculature surrounded by red blood
cells, indicative of IPH.

Wall stress is not to be confused with wall shear stress, caused
by frictional (eg, hemodynamic) forces due to blood flow. Wall
shear stress is usually also higher in the upstream region with lami-
nar flow, while the turbulent flow downstream of the maximal ste-
nosis is associated with low shear stress levels.11,12,14,33,43-47 High
wall shear stress promotes apoptosis of vascular smooth-muscle
cells.48 It also leads to an increased expression of endothelial adhe-
sion molecules, resulting in an accumulation of macrophages,32

which will result in an increased amount of metalloproteinases,
which can break down the matrix of the overlying FC and, there-
fore, contribute to destabilization of the plaque.12,30,32 This will tip
the scale toward matrix breakdown instead of cap-reinforcing ma-
trix synthesis by smooth-muscle cells.14 Thus, increased wall shear
stress in the upstream region may lead to degradation of the FC,
which can also contribute to the development of IPH.

A limitation of the present study is the lack of hemodynamic
and biomechanical data (ie, the distribution of wall stress and wall
shear stress). Computational fluid dynamics and 4D flow MR
imaging can be used to determine wall stress and wall shear
stress.46,47 Future studies are warranted that include computational
fluid dynamics or 4D flow MR imaging to directly relate the local
distribution of IPH and TRFC to wall stress and wall shear stress.
If a causal relation is proved, it may lead to evaluation of new treat-
ment options, such as pulse-pressure reduction.

Another limitation in the PARISK study is that different scan-
ners and coils were used at different centers. Consequently, there
were differences in the image quality of datasets coming from dif-
ferent centers.

CONCLUSIONS
We demonstrated that IPH is more prevalent on the proximal
side of the plaque compared with the distal side in patients with
mild-to-moderate stenosis. This prevalence may indicate that
biomechanical and hemodynamic factors play an important role
in the development of IPH. The results of our study suggest that
radiologists could pay attention to whether they observe abnor-
mal soft tissue in the proximal region of the plaque when review-
ing carotid MRA and CTA examinations.
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