Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home

User menu

  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

ASHNR American Society of Functional Neuroradiology ASHNR American Society of Pediatric Neuroradiology ASSR
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Accepted Manuscripts
    • Article Preview
    • Past Issue Archive
    • Video Articles
    • AJNR Case Collection
    • Case of the Week Archive
    • Case of the Month Archive
    • Classic Case Archive
  • Special Collections
    • AJNR Awards
    • Low-Field MRI
    • Alzheimer Disease
    • ASNR Foundation Special Collection
    • Photon-Counting CT
    • View All
  • Multimedia
    • AJNR Podcasts
    • AJNR SCANtastic
    • Trainee Corner
    • MRI Safety Corner
    • Imaging Protocols
  • For Authors
    • Submit a Manuscript
    • Submit a Video Article
    • Submit an eLetter to the Editor/Response
    • Manuscript Submission Guidelines
    • Statistical Tips
    • Fast Publishing of Accepted Manuscripts
    • Graphical Abstract Preparation
    • Imaging Protocol Submission
    • Author Policies
  • About Us
    • About AJNR
    • Editorial Board
    • Editorial Board Alumni
  • More
    • Become a Reviewer/Academy of Reviewers
    • Subscribers
    • Permissions
    • Alerts
    • Feedback
    • Advertisers
    • ASNR Home
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds

AJNR Awards, New Junior Editors, and more. Read the latest AJNR updates

Research ArticleSpine Imaging and Spine Image-Guided Interventions

Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures

A.F. Voter, M.E. Larson, J.W. Garrett and J.-P.J. Yu
American Journal of Neuroradiology August 2021, 42 (8) 1550-1556; DOI: https://doi.org/10.3174/ajnr.A7179
A.F. Voter
aSchool of Medicine and Public Health (A.F.V.), University of Wisconsin-Madison, Madison, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.F. Voter
M.E. Larson
bDepartment of Radiology (M.E.L., J.W.G., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.E. Larson
J.W. Garrett
bDepartment of Radiology (M.E.L., J.W.G., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.W. Garrett
J.-P.J. Yu
bDepartment of Radiology (M.E.L., J.W.G., J.-P.J.Y.), University of Wisconsin-Madison, Madison, Wisconsin
cDepartment of Biomedical Engineering (J.-P.J.Y.), College of Engineering, University of Wisconsin-Madison, Madison, Wisconsin
dDepartment of Psychiatry (J.-P.J.Y.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.-P.J. Yu
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Copley D,
    2. Tilliridou D,
    3. Jamjoom M
    . Traumatic cervical spine fractures in the adult. Br J Hosp Med (Lond) 2016;77:530–35 doi:10.12968/hmed.2016.77.9.530 pmid:27640656
    CrossRefPubMed
  2. 2.↵
    1. Denis F
    . The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine (Phila Pa 1976) 1983;8:817–31 doi:10.1097/00007632-198311000-00003 pmid:6670016
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Fischer PE,
    2. Perina DG,
    3. Delbridge TR, et al
    . Spinal motion restriction in the trauma patient: a joint position statement. Prehosp Emerg Care 2018;22:659–61 doi:10.1080/10903127.2018.1481476 pmid:30091939
    CrossRefPubMed
  4. 4.↵
    1. Beckmann NM,
    2. West OC,
    3. Nunez D Jr., et al
    . Expert Panel on Neurological Imaging and Musculoskeletal Imaging. ACR Appropriateness Criteria® Suspected Spine Trauma. J Am Coll Radiol 2019;16:S264–85 doi:10.1016/j.jacr.2019.02.002 pmid:31054754
    CrossRefPubMed
  5. 5.↵
    1. Hess EP,
    2. Haas LR,
    3. Shah ND, et al
    . Trends in computed tomography utilization rates: a longitudinal practice-based study. J Patient Saf 2014;10:52–58 doi:10.1097/PTS.0b013e3182948b1a pmid:24080717
    CrossRefPubMed
  6. 6.↵
    1. Kocher KE,
    2. Meurer WJ,
    3. Fazel R, et al
    . National trends in use of computed tomography in the emergency department. Ann Emerg Med 2011;58:452–62 doi:10.1016/j.annemergmed.2011.05.020 pmid:21835499
    CrossRefPubMed
  7. 7.↵
    1. McDonald RJ,
    2. Schwartz KM,
    3. Eckel LJ, et al
    . The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol 2015;22:1191–98 doi:10.1016/j.acra.2015.05.007 pmid:26210525
    CrossRefPubMed
  8. 8.↵
    1. Hoffman JR,
    2. Mower WR,
    3. Wolfson AB, et al
    . Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma: National Emergency X-Radiography Utilization Study Group. N Engl J Med 2000;343:94–99 doi:10.1056/NEJM200007133430203 pmid:10891516
    CrossRefPubMedWeb of Science
  9. 9.↵
    1. Mower WR,
    2. Wolfson AB,
    3. Hoffman JR, et al
    . The Canadian C-spine rule. N Engl J Med 2004;350:1467–69 doi:10.1056/NEJM200404013501420 pmid:15074005, 15070802
    CrossRefPubMedWeb of Science
  10. 10.↵
    1. Sharp AL,
    2. Huang BZ,
    3. Tang T, et al
    . Implementation of the Canadian CT head rule and its association with use of computed tomography among patients with head injury. Ann Emerg Med 2018;71:54–63 doi:10.1016/j.annemergmed.2017.06.022 pmid:28739290
    CrossRefPubMed
  11. 11.↵
    1. Mower WR,
    2. Gupta M,
    3. Rodriguez R, et al
    . Validation of the sensitivity of the National Emergency X-Radiography Utilization Study (NEXUS) head computed tomographic (CT) decision instrument for selective imaging of blunt head injury patients: an observational study. PLoS Med 2017;14:e1002313 doi:10.1371/journal.pmed.1002313 pmid:28700585
    CrossRefPubMed
  12. 12.↵
    DSI Home. FDA Cleared AI Algorithms. American College of Radiology. 2020. https://models.acrdsi.org/. Accessed September 11, 2020
  13. 13.↵
    1. Benjamens S,
    2. Dhunnoo P,
    3. Mesko B
    . The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 2020;3:118 doi:10.1038/s41746-020-00324-0 pmid:32984550
    CrossRefPubMed
  14. 14.↵
    1. Alwosheel A,
    2. van Cranenburgh S,
    3. Chorus CG
    . Is your dataset big enough? Sample size requirements when using artificial neural networks for discrete choice analysis. J Choice Model 2018;28:167–82 doi:10.1016/j.jocm.2018.07.002
    CrossRef
  15. 15.↵
    1. Park SH,
    2. Han K
    . Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–09 doi:10.1148/radiol.2017171920 pmid:29309734
    CrossRefPubMed
  16. 16.↵
    1. Kim DW,
    2. Jang HY,
    3. Kim KW, et al
    . Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405–10 doi:10.3348/kjr.2019.0025 pmid:30799571
    CrossRefPubMed
  17. 17.↵
    1. Liu X,
    2. Faes L,
    3. Kale AU, et al
    . A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019;1:e271–97 doi:10.1016/S2589-7500(19)30123-2 pmid:33323251
    CrossRefPubMed
  18. 18.↵
    1. Zech JR,
    2. Badgeley MA,
    3. Liu M, et al
    . Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med 2018;15:e1002683 doi:10.1371/journal.pmed.1002683 pmid:30399157
    CrossRefPubMed
  19. 19.↵
    U.S. Food and Drug Administration. K190896. 2019 https://www.accessdata.fda.gov/cdrh_docs/pdf19/K190896.pdf. Accessed February 19, 2021
  20. 20.↵
    1. Burns JE,
    2. Yao J,
    3. Munoz H, et al
    . Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 2016;278:64–73 doi:10.1148/radiol.2015142346 pmid:26172532
    CrossRefPubMed
  21. 21.↵
    1. Burns JE,
    2. Yao J,
    3. Summers RM
    . Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology 2017;284:788–97 doi:10.1148/radiol.2017162100 pmid:28301777
    CrossRefPubMed
  22. 22.↵
    1. Tomita N,
    2. Cheung YY,
    3. Hassanpour S
    . Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med and Med 2018;98:8–15 doi:10.1016/j.compbiomed.2018.05.011 pmid:29758455
    CrossRefPubMed
  23. 23.↵
    1. Roth HR,
    2. Wang Y,
    3. Yao J, et al
    . Deep convolutional networks for automated detection of posterior-element fractures on spine CT. Computer Science > Computer Vision and Pattern Recognition January 29, 2016. https://arxiv.org/abs/1602.00020. Accessed September 2, 2020
  24. 24.↵
    1. Ginat DT
    . Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 2020;62:335–40 doi:10.1007/s00234-019-02330-w pmid:31828361
    CrossRefPubMed
  25. 25.↵
    1. Ojeda PZ,
    2. Zawaideh M,
    3. Mossa-Basha M, et al
    . The utility of deep learning: evaluation of a convolutional neural network for detection of intracranial bleeds on non-contrast head computed tomography studies. In: Proeedings of SPIE Medical Imaging, San Diego California. February 16–21, 2019
PreviousNext
Back to top

In this issue

American Journal of Neuroradiology: 42 (8)
American Journal of Neuroradiology
Vol. 42, Issue 8
1 Aug 2021
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Cite this article
A.F. Voter, M.E. Larson, J.W. Garrett, J.-P.J. Yu
Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures
American Journal of Neuroradiology Aug 2021, 42 (8) 1550-1556; DOI: 10.3174/ajnr.A7179

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
0 Responses
Respond to this article
Share
Bookmark this article
Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures
A.F. Voter, M.E. Larson, J.W. Garrett, J.-P.J. Yu
American Journal of Neuroradiology Aug 2021, 42 (8) 1550-1556; DOI: 10.3174/ajnr.A7179
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • Responses
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • The Future of Artificial Intelligence in Clinical Radiology: Savior or False Hope?
  • Automated Detection of Cervical Spinal Stenosis and Cord Compression via Vision Transformer and Rules-Based Classification
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Dynamic CT Myelography: Patient Positioning
  • Evaluation of SIH MR Scoring Systems in Normals
  • Management Outcomes For VO Spine Biopsy
Show more SPINE IMAGING AND SPINE IMAGE-GUIDED INTERVENTIONS

Similar Articles

Advertisement

Indexed Content

  • Current Issue
  • Accepted Manuscripts
  • Article Preview
  • Past Issues
  • Editorials
  • Editor's Choice
  • Fellows' Journal Club
  • Letters to the Editor
  • Video Articles

Cases

  • Case Collection
  • Archive - Case of the Week
  • Archive - Case of the Month
  • Archive - Classic Case

More from AJNR

  • Trainee Corner
  • Imaging Protocols
  • MRI Safety Corner
  • Book Reviews

Multimedia

  • AJNR Podcasts
  • AJNR Scantastics

Resources

  • Turnaround Time
  • Submit a Manuscript
  • Submit a Video Article
  • Submit an eLetter to the Editor/Response
  • Manuscript Submission Guidelines
  • Statistical Tips
  • Fast Publishing of Accepted Manuscripts
  • Graphical Abstract Preparation
  • Imaging Protocol Submission
  • Evidence-Based Medicine Level Guide
  • Publishing Checklists
  • Author Policies
  • Become a Reviewer/Academy of Reviewers
  • News and Updates

About Us

  • About AJNR
  • Editorial Board
  • Editorial Board Alumni
  • Alerts
  • Permissions
  • Not an AJNR Subscriber? Join Now
  • Advertise with Us
  • Librarian Resources
  • Feedback
  • Terms and Conditions
  • AJNR Editorial Board Alumni

American Society of Neuroradiology

  • Not an ASNR Member? Join Now

© 2025 by the American Society of Neuroradiology All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire