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ORIGINAL RESEARCH
ADULT BRAIN

Analysis of Stroke Detection during the COVID-19 Pandemic
Using Natural Language Processing of Radiology Reports

M.D. Li, M. Lang, F. Deng, K. Chang, K. Buch, S. Rincon, W.A. Mehan, T.M. Leslie-Mazwi, and
J. Kalpathy-Cramer

ABSTRACT

BACKGROUND AND PURPOSE: The coronavirus disease 2019 (COVID-19) pandemic has led to decreases in neuroimaging volume.
Our aim was to quantify the change in acute or subacute ischemic strokes detected on CT or MR imaging during the pandemic
using natural language processing of radiology reports.

MATERIALS AND METHODS:We retrospectively analyzed 32,555 radiology reports from brain CTs and MRIs from a comprehensive
stroke center, performed from March 1 to April 30 each year from 2017 to 2020, involving 20,414 unique patients. To detect acute
or subacute ischemic stroke in free-text reports, we trained a random forest natural language processing classifier using 1987 ran-
domly sampled radiology reports with manual annotation. Natural language processing classifier generalizability was evaluated using
1974 imaging reports from an external dataset.

RESULTS: The natural language processing classifier achieved a 5-fold cross-validation classification accuracy of 0.97 and an F1 score
of 0.74, with a slight underestimation (�5%) of actual numbers of acute or subacute ischemic strokes in cross-validation.
Importantly, cross-validation performance stratified by year was similar. Applying the classifier to the complete study cohort, we
found an estimated 24% decrease in patients with acute or subacute ischemic strokes reported on CT or MR imaging from March
to April 2020 compared with the average from those months in 2017–2019. Among patients with stroke-related order indications,
the estimated proportion who underwent neuroimaging with acute or subacute ischemic stroke detection significantly increased
from 16% during 2017–2019 to 21% in 2020 (P¼ .01). The natural language processing classifier performed worse on external data.

CONCLUSIONS: Acute or subacute ischemic stroke cases detected by neuroimaging decreased during the COVID-19 pandemic,
though a higher proportion of studies ordered for stroke were positive for acute or subacute ischemic strokes. Natural language
processing approaches can help automatically track acute or subacute ischemic stroke numbers for epidemiologic studies, though
local classifier training is important due to radiologist reporting style differences.

ABBREVIATIONS: ASIS ¼ acute or subacute ischemic stroke; COVID-19 ¼ coronavirus disease 2019; NLP ¼ natural language processing

There is much concern regarding the impact of the coronavi-
rus disease 2019 (COVID-19) pandemic on the quality of

stroke care, including issues with hospital capacity, clinical

resource re-allocation, and the safety of patients and clinicians.1,2

Previous reports have shown that there have been substantial
decreases in stroke neuroimaging volume during the pan-
demic.3,4 In addition, acute ischemic infarcts have been found
on neuroimaging studies in many hospitalized patients with
COVID-19, though the causal relationship is unclear.5,6 Studies
like these and other epidemiologic analyses usually rely on the cre-
ation of manually curated databases, in which identification of
cases can be time-consuming and difficult to update in real-time.
One way to facilitate such research is to use natural language proc-
essing (NLP), which has shown utility for automated analysis of ra-
diology report data.7 NLP algorithms have been developed
previously for the classification of neuroradiology reports for the
presence of ischemic stroke findings and acute ischemic stroke
subtypes.8,9 Thus, NLP has the potential to facilitate COVID-19
research.
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In this study, we developed an NLP machine learning model
that classifies radiology reports for the presence or absence of
acute or subacute ischemic stroke (ASIS), as opposed to chronic
stroke. We used this model to quantify the change in ASIS
detected on all CT or MR imaging studies performed at a large
comprehensive stroke center during the COVID-19 pandemic in
the United States. We also evaluated NLP model generalizability
and different training strategies using a sample of radiology
reports from a second stroke center.

MATERIALS AND METHODS
This retrospective study was exempted with waiver of informed
consent by the institutional review board of Mass General
Brigham (Boston, Massachusetts), the integrated health system
that includes both Massachusetts General Hospital and Brigham
andWomen's Hospital.

Radiology Report Extraction
We used a custom hospital-based radiology report search tool to
extract head CT and brain MR imaging study reports performed
at Massachusetts General Hospital (hospital 1) and its affiliated
imaging centers (a comprehensive stroke center) from March 1
to April 30 in each year from 2017 to 2020. At this hospital, head
CT and brain MR imaging studies are routinely performed for
patients with stroke. Head CTs included noncontrast and con-
trast-enhanced head CT and CT angiography studies. Brain
MRIs included noncontrast and contrast-enhanced brain MRIs
and MR angiography studies. After we removed outside imaging
studies also stored in the data base, there were 15,627 head CT
and 17,151 brain MR imaging reports (a total of 32,778 studies).
Of these studies, 15,590 head CT and 16,965 brain MR imaging
reports had study “Impressions”, which restricted the analysis to
98.9% and 99.8% of the dataset, respectively. These studies
formed the aggregate study cohort, which included a total of
32,555 brain MR imaging and head CT reports on 20,414 unique
patients.

Of the original 32,778 study reports extracted, 1000 head CT
and 1000 brain MR imaging studies were randomly sampled for
manual annotation to serve as training and testing data for an NLP
machine learning model. Of these studies, 1987 contained study
Impressions (99.4%). The studies without study Impressions were
predominantly pediatric brain MR imaging studies that involved a
different structure for reporting.

Using a commercial radiology information system (Primordial/
Nuance Communications), we also extracted an additional dataset
of radiology reports from Brigham and Women’s Hospital (hospi-
tal 2) and its affiliated imaging centers (also a comprehensive
stroke center). We analyzed the overlap in radiologists and trainees
involved in the dictation of these reports between hospitals 1 and
2. The first 500 consecutive head CTs and the first 500 brain MRIs
performed in both April 2019 and April 2020 were obtained (a
total of 1000 head CTs and 1000 brain MR imaging study reports),
with the same inclusion criteria for noncontrast and contrast-
enhanced studies, as well as angiographic studies. All of these
reports had study Impressions. After removing duplicate study
entries in this dataset (26, 1.3%), 1974 head CT and brain MR
imaging reports remained for further analysis.

NLP Training Dataset Annotation
For NLP model training, the 1987 study reports sampled from
hospital 1 and the 1974 study reports available from hospital 2
were manually annotated, each by a diagnostic radiology resi-
dent (F.D. for CT and M.L. for MR imaging from hospital 1 and
M.D.L. for CT and MR imaging from hospital 2). The annota-
tors classified each report for the presence of ASIS using the
study “Impression.” This finding could be explicitly or implic-
itly stated in the report, and reports that stated or suggested
chronicity of an infarct were not considered to have this finding.
For example, “old” or “chronic” infarct suggests chronicity,
though more ambiguous terms like “age-indeterminate” or
“unclear timeframe” were sometimes found. Reports with am-
biguous terms were not considered to have ASIS, unless an
expression of newness was conveyed in the report (eg, “new
age-indeterminate infarct”).

NLP Machine Learning Model Training and Testing
We trained a random forest machine learning model that takes
the radiology report free-text Impression as input and classifies
the report for the presence or absence of an ASIS. To train a
machine learning model to automatically parse the radiology
report text, we used the re (Version 2.2.1), sklearn (Version
0.20.3), and nltk (Version 3.4) packages in Python (Version
3.7.1). Before model training, we used regular expressions to
extract sentences with words containing the stems “infarct” or
“ischem” from each study Impression. This step helped to focus
the algorithm on sentences containing content relevant to the
classification task. The words in the extracted sentences were
stemmed using the snowball.EnglishStemmer from the nltk pack-
age. The extracted and stemmed sentences were then represented
as vectors using bag-of-words vectorization with N-grams
(n¼ 2–3; minimum term frequency, 1%), an approach previously
used for radiology report natural language processing.10 Negation
was dealt with using the nltk mark_negation function, which
appends a “_NEG” suffix between words that appear between a
negation term and a punctuation mark. These vector representa-
tions of the radiology report Impression served as inputs to the
random forest NLP classifier.

The random forest NLP classifier was trained using default
hyperparameters in sklearn, Version 0.20.3, including 100 trees in
the forest using the Gini Impurity for measuring the quality of
the data split. Using the manually annotated datasets from hospi-
tals 1 and 2, we evaluated 2 training strategies. First, we trained a
classifier using the hospital 1 annotated dataset and tested per-
formance using 5-fold cross-validation, stratified on outcome
(ASIS), given the class imbalance. We also tested this classifier on
the external hospital 2 annotated dataset. Second, we trained a
classifier using the combined hospital 1 and 2 annotated datasets
and tested performance using 5-fold cross-validation, also strati-
fied on outcome, but only including hospital 1 reports in the
cross-validation to assess performance on hospital 1 data specifi-
cally. We repeated this testing using only hospital 2 reports in the
cross-validation to assess the performance on the hospital 2 data
specifically. When the combined hospital 1 and 2 datasets were
used for classifier training, the N-gram minimum term frequency
was halved to 0.5%; empirically, the number of N-gram terms
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was then similar between this classifier and the classifier trained
on hospital 1 data only. The Python code for training these ran-
dom forest classifiers is available at github.com/QTIM-Lab/asis_
nlp.

The metrics used to assess model performance included accu-
racy, precision, recall, and F1 score. Performance was evaluated
for CT and MR imaging reports combined, CT reports alone, and
MR imaging reports alone, with 5-fold cross-validation when
appropriate.

NLP-Based Epidemiologic Analysis
On the basis of the results of the NLP model testing, an NLP clas-
sifier was then applied to the complete cohort of 32,555 brain MR
imaging and head CT reports from hospital 1 to estimate the
number of patients with ASIS. Patients with at least 1 neuroimag-
ing study (CT or MR imaging) with an ASIS during the time pe-
riod in question were considered to have had an infarct.
Demographic information associated with these patients was
extracted along with the radiology report text.

Statistics
Statistical testing was performed using the scipy Version 1.1.0
package in Python. The Pearson x 2 test of independence and 1-
way ANOVA were used when appropriate. Statistical significance
was determined a priori to be P, .05. Performance metrics were
reported as the bootstrap median estimate with 95% confidence
intervals.11

RESULTS
Manually Annotated Radiology Report Dataset
Characteristics
Among the randomly sampled 1987 neuroimaging reports from
hospital 1 used for NLP model development, 67 head CT and 68
brain MR imaging reports were manually classified as positive for
ASIS (positive in 129 patients from 1904 total unique patients).
Among the 1974 neuroimaging reports from hospital 2, 84 head
CT and 91 brain MR imaging reports were manually classified as
positive for ASIS (positive in 101 patients from 1514 total unique
patients). The remainder of studies were negative for ASIS. In the
hospital 1 annotated report dataset, 126 unique radiologists and
trainees (residents and fellows) were involved in the dictation of
these reports. In the hospital 2 annotated report dataset, there
were 94 unique radiologists and trainees involved. There was an
overlap of 3 radiologists and trainees between these 2 datasets
due to radiologists/trainees moving between institutions. The
hospital 1 and hospital 2 reports were all free-text without a
standardized structure. The manual annotators who read the
report Impressions found that they differed stylistically between
the hospitals.

NLP Model Performance
Random forest NLP classifier testing performance is summarized
in the Online Supplemental Data. The stratified 5-fold cross-vali-
dation performance of the NLP classifier trained on the hospital 1
annotated dataset showed an average accuracy of 0.97 (95% CI,
0.96–0.97) and an F1 score of 0.74 (95% CI, 0.72–0.76). When
this NLP classifier was tested on the hospital 2 annotated dataset,

the performance was lower, with an accuracy of 0.95 (95% CI,
0.94–0.96) and an F1 score of 0.66 (95% CI, 0.59–0.72). In both
tests, when the performance results for CT and MR imaging were
separately analyzed, we found that the model performed better
for MR imaging reports compared with CT reports.

We also trained a random forest NLP classifier using the com-
bined annotated reports from hospitals 1 and 2. In the stratified
5-fold cross-validation performance with testing of only hospital
1 data in the validation folds, the average accuracy was 0.96 (95%
CI, 0.96-0.96) and the average F1 score was 0.74 (95% CI, 0.72–
0.76). This performance on hospital 1 data was similar compared
with the NLP classifier trained using only hospital 1 data. In the
stratified 5-fold cross-validation performance with testing of only
hospital 2 data in the validation folds, the average accuracy was
0.96 (95% CI, 0.96-0.97) and the average F1 score was 0.79 (95%
CI, 0.77–0.80). This performance on hospital 2 data was substan-
tially improved compared with the NLP classifier trained using
only hospital 1 data. Because the performance on hospital 1 data
was similar between the NLP classifier trained on hospital 1
reports and the NLP classifier trained on hospitals 1 and 2
reports, we used the former classifier for further analysis of the
complete hospital 1 dataset.

For the NLP classifier trained on hospital 1 reports, in the 5
cross-validation folds for the combined CT and MR imaging
analysis, there was an average of 19.4 (95% CI, 18.6–20.2) true-
positive, 6.2 (95% CI, 5.6–6.8) false-positive, 7.6 (95% CI, 6.8–
8.4) false-negative, and 364.2 (95% CI, 18.6–20.2) true-negative
classifications. In misclassified cases, the reports typically con-
tained uncertainty regarding the chronicity of the infarct (eg,
age-indeterminate or not otherwise specified in the study
Impression). For each of the 5 cross-validation folds, there was an
average of 25.6 positive results predicted (95% CI, 24.6–26.8),
compared with 27.0 actual positive results in each validation fold,
due to the stratification on outcome. The NLP predicted that the
number of cases slightly underestimated the actual number of
studies positive for ASIS in the validation folds (average differ-
ence, �1.4; 95% CI, 0.2–2.4; expressed as percentages, �5.1%;
95% CI, 0–8.8%).

To ensure that variations in reporting styles within the hospi-
tal 1 reports did not systematically differ by year (because our epi-
demiologic analysis would compare reports from different years),
we performed leave-one-year-out cross-validation on the hospital
1 dataset, in which NLP classifiers were trained on data from all
years except the year of the excluded validation set (eg, trained on
reports from 2018, 2019, and 2020, and then tested on reports
from 2020). We found that there was no substantial difference in
model performance in each of those validation folds (with over-
lap of 95% CI), which shows that the model performed similarly
across time periods at hospital 1 (Online Supplemental Data).
The F1 score was 0.72 in 2020 versus between 0.68 and 0.73 from
2017 to 2019.

While the NLP model systematically slightly underestimated
ASIS case numbers, because the model performed similarly from
year-to-year, we used this random forest classifier to estimate
changes in the numbers of ASISs detected in the complete hospi-
tal 1 study cohort of 32,555 head CT and brain MR imaging
reports.
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ASIS during the COVID-19 Pandemic
Using this random forest NLP classifier, we estimated the num-
ber of neuroimaging studies performed and the number of
patients with detected ASIS (Table 1). Patients with at least 1 neu-
roimaging study (CT or MR imaging) with an ASIS during the
time period in question were considered to have had ASIS. There
was an estimated 24% decrease in patients with ASIS reported on
CT or MR imaging fromMarch to April 2020 compared with the
average of the same months from 2017 to 2019, after previous
year-on-year growth from 2017 to 2019 (Figure). There was a
concomitant decrease in the total number of neuroimaging stud-
ies performed and patients undergoing neuroimaging in March

and April 2020 compared with 2019 (�39% and �41%,
respectively).

In the complete cohort of 32,555 study reports, 32,358 of the
reports (99.4%) included structured and/or unstructured text in
the study indication field, entered at the time of order entry. Of
those cases, we filtered for indications including “stroke,” “neuro
deficit,” and “TIA,” which resulted in 5204 study reports (Table
2). In these patients, we found an estimated 21% decrease in ASIS
reported from March to April 2020 compared with March to
April 2019 (Figure). In the subset of patients who underwent
imaging with stroke-related indications, the estimated proportion
of patients with ASIS detected increased from 16% during 2017–
2019 to 21% in 2020 (P¼ .01) (Table 2). The estimated propor-
tion of neuroimaging studies with ASIS detected increased from
20% during 2017–2019 and 24% in 2020 (P¼ .01).

The average age of patients with ASIS detected was 66 [SD,
17] years, and there was no significant difference in age among
any of the years (P¼ .9). There was also no significant difference
in the sex ratio of March to April 2020 compared with the March
to April 2017–2019 time periods (P¼ .8). In aggregate, 56% of
patients with ASIS were men. See Online Supplemental Data for
data by year.

Neuroimaging Studies Performed per Patient
If the number of neuroimaging studies performed per patient dif-
fered between the prepandemic and pandemic time periods, the
number of opportunities to detect ASIS in a patient could vary.
However, this variance did not appear to be a confounding factor
in our analysis because we found no significant difference in the
number of neuroimaging studies performed per patient between
the March and April 2020 time period and each of the March to
April 2017, 2018, or 2019 time periods (P. .2).

DISCUSSION
In this study, we developed a random forest NLP algorithm for
automated classification of ASIS in radiology report Impressions
and applied this algorithm to reports during and before the
COVID-19 pandemic. We found a substantial decrease in the
number of patients with ASIS detected on all CT and MR imag-
ing studies performed at a comprehensive stroke center during
the pandemic in the United States. This decrease could be related
to avoidance of the hospital due to fear of contracting COVID-
19, as previously speculated.12,13 Previous studies have shown a
39% decrease in neuroimaging studies performed primarily for
stroke thrombectomy evaluation using commercial software in

Table 1: Natural language processing-based analysis of all radiology reports from hospital 1

Time Period

Total No. of
Neuroimaging

Studies Performed
(CT/MRI)

Estimated No. of
Neuroimaging

Studies with ASIS
Detected (% of

Total)

Total No. of Patients
Undergoing
Neuroimaging

Estimated No. of
Patients with ASIS
Detected (% of

Total)

No. of
Neuroimaging
Studies per
Patient

March-April 2020
(COVID-19 pandemic)

5709 428 (7.4%) 3977 231 (5.8%) 1.4

March-April 2017–2019a 8949 541 (6.0%) 6312 304 (4.8%) 1.4
2019 9403 586 (6.2%) 6770 313 (4.6%) 1.4
2018 9086 523 (5.8%) 6417 302 (4.7%) 1.4
2017 8357 515 (6.2%) 5750 297 (5.1%) 1.5

a Three-year average.

FIGURE. Estimated numbers of patients with acute or subacute is-
chemic strokes detected on CT or MR imaging in March and April
from 2017 to 2020 at hospital 1.

432 Li Mar 2021 www.ajnr.org



the United States and a 59.7% decrease in stroke code CT-specific
cases in New York.3,4 Our study differs because we sought to
quantify the decrease in actual ASISs detected on such studies
and the rate of detection. Among patients with stroke-related
image -order indication, we found a significant increase in the
proportion of neuroimaging studies positive for ASIS. This find-
ing could suggest that during the COVID-19 pandemic, imaged
patients had, on average, more severe or clear-cut stroke syn-
dromes (with a higher pretest probability of stroke), implying
that patients with mild or equivocal symptoms presented to the
hospital less often than in previous years.

The NLP machine learning approach that we used in this
study can also be applied to additional data relatively easily,
which will allow us to continue to monitor the detection of ASIS
on neuroimaging at our institution in the future. NLP algorithms
have been used to analyze neuroradiology reports for stroke find-
ings, specifically for the presence of any ischemic stroke findings
or ischemic stroke subtypes.8,9 The task in our model, however, is
relatively challenging in that we sought to identify acute or suba-
cute strokes specifically and deliberately excluded chronic
infarcts. There is often uncertainty or ambiguity in radiology
reports related to the timeframe for strokes, which can make this
task challenging for the NLP algorithm. Thus, it is not surprising
that our NLP model performed better on MR imaging reports
compared with CT reports, given the superiority of MR imaging
for characterizing the age of an infarct.

The NLP classifier trained on only hospital 1 reports showed
lower performance when tested on radiology reports from an
external site, which was likely due to systematic differences in lin-
guistic reporting styles between the radiology departments in
hospitals 1 and 2. While combining training data from hospitals
1 and 2 helped to create a more generalizable classifier with
improved performance on hospital 2 data, the test performance
of this classifier on data from hospital 1 was not substantially dif-
ferent from the classifier trained on only hospital 1 data. These
findings highlight the importance of localized testing of NLP
algorithms before clinical deployment. Nevertheless, a locally
trained and deployed model can still be useful, as long as its spe-
cific use case and limitations are understood.14

Instead of using the radiology report NLP approach presented
in our study, we could have used the International Classification
of Diseases codes from hospital administrative and billing data.
However, the International Classification of Diseases coding is
known to have variable sensitivity and specificity for acute stroke

in the literature15 and may be particularly problematic for reliably
differentiating stroke chronicity. Comparison of NLP analyses of
radiology reports versus administrative data base International
Classification of Diseases coding could be an avenue of future
research.

There are important limitations to this study. First, we used
an automated NLP approach for analysis, which systematically
slightly underestimates the number of ASISs but may be scaled to
analyze large numbers of reports. In the future, newer NLP tech-
nologies including deep learning–based algorithms may help
improve the ability to perform studies like this one.16 Second, the
radiology report is an imperfect reference standard for assess-
ment of ASIS, particularly for CT in which early infarcts may not
be seen. In our epidemiologic analysis, patients with at least 1
neuroimaging study with ASIS during the time period of interest
were counted as having ASIS. Thus, patients with early infarcts
not reported on CT would still be counted as having ASIS if
reported on the subsequent MR imaging, reducing the impact of
false-negative CTs. However, false-positive head CTs would
falsely elevate the count of ASIS. Third, identification of studies
with stroke-related indications likely underestimates the total
number of studies performed for suspicion of stroke because
nonspecific indications like “altered mental status” were not
included. This bias should be consistent across each year though;
thus, it should not impact our comparison of the positive case
rate between the time periods in question.

CONCLUSIONS
We developed an NLP machine learning model to characterize
trends in stroke imaging at a comprehensive stroke center before
and during the COVID-19 pandemic. The sequelae of decreased
detection of strokes remains to be seen, but this algorithm and
the shared code can help facilitate future research of these trends.
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