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ORIGINAL RESEARCH
PEDIATRICS

Mapping Human Fetal Brain Maturation In Vivo Using
Quantitative MRI

V.U. Schmidbauer, G.O. Dovjak, M.S. Yildirim, G. Mayr-Geisl, M. Weber, M.C. Diogo, G.M. Gruber, F. Prayer,
R.-I. Milos, M. Stuempflen, B. Ulm, J. Binder, D. Bettelheim, H. Kiss, D. Prayer, and G. Kasprian

ABSTRACT

BACKGROUND AND PURPOSE:On the basis of a single multidynamic multiecho sequence acquisition, SyMRI generates a variety of
quantitative image data that can characterize tissue-specific properties. The aim of this retrospective study was to evaluate the
feasibility of SyMRI for the qualitative and quantitative assessment of fetal brain maturation.

MATERIALS AND METHODS: In 52 fetuses, multidynamic multiecho sequence acquisitions were available. SyMRI was used to perform
multidynamic multiecho–based postprocessing. Fetal brain maturity was scored qualitatively on the basis of SyMRI-generated MR imaging
data. The results were compared with conventionally acquired T1-weighted/T2-weighted contrasts as a standard of reference. Myelin-
related changes in T1-/T2-relaxation time/relaxation rate, proton density, and MR imaging signal intensity of the developing fetal brain
stem were measured. A Pearson correlation analysis was used to detect correlations between the following: 1) the gestational age at MR
imaging and the fetal brain maturity score, and 2) the gestational age at MR imaging and the quantitative measurements.

RESULTS: SyMRI provided images of sufficient quality in 12/52 (23.08%) (range, 231 6–341 0) fetal multidynamic multiecho
sequence acquisitions. The fetal brain maturity score positively correlated with gestational age at MR imaging (SyMRI: r¼ 0.915,
P, .001/standard of reference: r¼ 0.966, P, .001). Myelination-related changes in the T2 relaxation time/T2 relaxation rate of the
medulla oblongata significantly correlated with gestational age at MR imaging (T2-relaxation time: r ¼ –0.739, P¼ .006/T2-relaxation
rate: r¼ 0.790, P¼ .002).

CONCLUSIONS: Fetal motion limits the applicability of multidynamic multiecho–based postprocessing. However, SyMRI-generated
image data of sufficient quality enable the qualitative assessment of maturity-related changes of the fetal brain. In addition, quanti-
tative T2 relaxation time/T2 relaxation rate mapping characterizes myelin-related changes of the brain stem prenatally. This
approach, if successful, opens novel possibilities for the evaluation of structural and biochemical aspects of fetal brain maturation.

ABBREVIATIONS: GA ¼ gestational age; MDME ¼ multidynamic multiecho; PD ¼ proton density; R1 ¼ T1-relaxation rate; R2 ¼ T2-relaxation rate; SI ¼ sig-
nal intensity; T1R ¼ T1-relaxation time; T2R ¼ T2-relaxation time

U ltrasonography is considered the mainstay of antenatal
imaging and serves as the technique of choice for the struc-

tural examination of the human fetus in utero.1-5 However, the
sonography-based assessment of prenatal brain development has
some specific limitations.6-9 Foremost among these is that current

sonography imaging systems do not allow a tissue-specific quan-
titative characterization of fetal brain maturity.10

Physical MR imaging properties have been proved to provide
noninvasive biomarkers for the assessment of brain maturation11

and may offer new possibilities in the prenatal detection of neuro-
developmental anomalies. Until now, the acquisition of quantita-
tive parameters, underlying visually perceptible MR imaging signal
intensity (SI) values, was considered a highly time-consuming pro-
cess, which limited its applicability in a clinical setting.12-16 Recent
developments in quantitative MR imaging enable the generation of
various MR imaging contrasts and quantitative maps based on a
single multidynamic multiecho (MDME) sequence acquisition
and, therefore, in a clinically acceptable imaging time.17-19 The
MDME data-postprocessing software SyMRI (Synthetic MR;
Version 11.1.5) provides information about tissue-specific MR
imaging properties such as proton density (PD) and relaxation
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parameters (T1-relaxation time [T1R]/T1-relaxation rate [R1]; T2-
relaxation time [T2R]/T2-relaxation rate [R2]).17 Furthermore, this
method allows the adjustment of TR, TE, and TI in retrospect,
which enables an individual modulation of the MR imaging con-
trasts after data acquisition.19 MDME-based imaging proved bene-
ficial in a neonatal neuroimaging setting because this technique
allows a reduction in examination time, while providing a variety
of imaging data beyond the standard neonatal MR imaging proto-
col.11,15,16 However, currently, the full potential of this technology
for the investigation of brain maturation at early developmental
stages is widely unexplored.

The aim of this study was to evaluate the feasibility of quanti-
tative MDME-based postprocessing for human fetal brain imag-
ing. For this purpose, qualitative neuroradiologic assessments of
brain maturation based on SyMRI-generated and conventionally
acquired MR imaging data were compared. The visual evaluation
of fetal brain maturity was complemented by a self-assessment of
confidence by the investigating radiologists. In addition, tissue-
specific properties of the fetal brain stem were quantified, to
investigate whether the described approach is sensitive to the
detection of myelin-related changes.

MATERIALS AND METHODS
Ethics Approval
The Ethics Commission of the Medical University of Vienna
approved the protocol of this study. All women provided written
informed consent for fetal MR imaging before scanning and
agreed to the scientific use of the acquired data.

Study Cohort
Between December 2019 and October 2020, a total of 52 fetal MR
images, including MDME sequence acquisitions of the fetal brain,
were collected at the Neuroradiology Department of a tertiary care

hospital. All fetuses included in this
study were referred for MR imaging by
the Department of Obstetrics and
Gynecology after a detailed sonographic
examination by a fetal medicine special-
ist, according to European standards.
Congenital abnormalities of the central
nervous system were the most common
indications for fetal MR imaging
(Online Supplemental Data). A detailed
overview of demographic and clinical
characteristics of included fetuses is
given in the Table. Fetal gestational age
(GA) (weeks) was determined at the first
trimester ultrasonographic screening.

Fetal MR Imaging Data
Acquisition and SyMRI-Based
MDME Postprocessing
Imaging was performed in accordance
with the fetal MR imaging guidelines of
the International Society of Sonography
in Obstetrics and Gynecology.20 All
fetuses were examined using a standar-

dized fetal MR imaging protocol of the brain (Online Supplemental
Data) on the same Ingenia 1.5T MR imaging system (Philips
Healthcare) equipped with a body coil. An MDME sequence
(Online Supplemental Data) (acquisition time: 3 minutes and 20
seconds) was acquired (axial plane) by applying 2 repeat acquisition
phases: phase a: saturation of 1 section by a section-selective satura-
tion pulse (flip angle ¼ 120°); and phase b: section-selective excita-
tion pulses (flip angle¼ 90°) and section-selective refocusing pulses
(flip angle ¼ 180°) to generate a train of spin-echoes for another
section.17,21,22 Via the mismatch between the saturated section and
the image section, a matrix with a variety of effects of R1/R2 was
acquired.21,22 Echo-trains, characterized by different saturation
delays, were used to estimate T1-/T2-relaxation parameters.17,21,22

The T1-relaxation constants allowed the local radiofrequency field
(B1) to be calculated.21 On the basis of the acquired relaxation pa-
rameters and B1, the PD can be computed.17 SyMRI-based MDME
postprocessing (postprocessing time: ,1 minute) was applied to
generate conventional MR imaging contrasts (Fig 1) and quantita-
tive MR imaging maps (Fig 2) for qualitative and quantitative anal-
ysis. Color-coded voxels, according to the physical MR imaging
properties, were used to generate quantitative maps.21

Fetal Brain Maturity Assessment
Before the evaluation of the MR imaging data, a visual review was
performed. On the basis of the subjective judgment made by 1 fe-
tal imaging specialist with 15 years of experience, fetuses were
excluded from this study if qualitative and quantitative analyses
were not possible due to severely degraded images by fetal
motion. To assess fetal brain maturity, we used a qualitative scor-
ing system based on existing brain-maturation scores.15,23

Developmental aspects were evaluated on both conventionally
acquired MR imaging contrasts (T1-weighted/snapshot inversion
recovery, T2-weighted) (axial plane) and SyMRI-generated image

Demographics and clinical characteristics
Fetal MDME
Sequence

Acquisitions (n= 12)
GA at MR
Imaging Sex Position

Brain MR Imaging
Findings

1 231 6 $ Breech Dolichocephaly
2 241 6 # Cephalic Asymmetry of lateral

ventricles
3 251 4 # Cephalic No pathologic findings
4 251 4 # Cephalic No pathologic findings
5 251 5 $ Cephalic No pathologic findings
6 251 5 # Breech Altered signal of

periventricular
crossroads

7 261 6 $ Cephalic No pathologic findings
8 271 4 # Breech No pathologic findings
9 291 6 # Cephalic No pathologic findings
10 301 1 # Breech No pathologic findings
11 321 4 $ Cephalic Agenesis of septum

pellucidum
12 341 0 $ Cephalic Agenesis of corpus

callosum,
ventriculomegaly,
hemorrhage (left cella
media)
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data (T1-weighted/T1-weighted inversion recovery, T2-weighted/
T2-weighted STIR, quantitative MR imaging maps) (axial plane)
by 2 independent neuroradiologists (rater 1, with 15 years of expe-
rience, and rater 2, with 30 years of experience with fetal MR imag-
ing), who were blinded to GA at MR imaging. The criteria used to
determine brain maturity were the following: morphologic presen-
tation of the frontal, occipital, and insular cortices according to
Vossough et al;23 the presence of the germinal matrix; identifiabil-
ity of the primary sulci;24 and fetal brain myelination (medulla
oblongata, midbrain and inferior colliculus, thalamus, posterior
limb of the internal capsule, and central region).15

SyMRI-generated quantitative MR imaging maps based on
T1R/R1 and T2R/R2 were available for the assessment of brain
myelination. The observers had the opportunity to adjust the
windowing (conventionally acquired and SyMRI-generated
MR imaging contrasts); TR, TE, and TI (SyMRI-generated MR
imaging contrasts); and the color-coding scale (SyMRI-gener-
ated quantitative MR imaging maps) at their discretion during
fetal brain maturity assessment. The scoring system is
explained in the Online Supplemental Data. The points allo-
cated for each evaluated developmental aspect were totaled,
resulting in a fetal brain maturity total score for each included
subject. Furthermore, both raters performed a Likert scale–
based self-assessment of confidence with regard to the evalua-
tion of fetal brain maturity. For this purpose, both raters allo-
cated a minimum of 1 (not very confident) and a maximum of
4 (highly confident) points when assessing the 10 components
of the score. The allocated points were totaled, resulting in a
total score for confidence (minimum: 10 [lowest level of confi-
dence]; maximum: 40 [highest level of confidence]) for each
included subject.

Determination of Physical
Properties of the Brain Stem
T1R (ms), R1 (s�1), T2R (ms), R2
(s�1), PD (%), and MR imaging SI
values were determined by manual
delineation of the medulla oblongata
and the midbrain on SyMRI-generated
image data (T1R/R1, T2R/R2, PD) and
conventionally acquired T2-weighted
contrasts (MR imaging SI values) (axial
plane). The provided average values of
the physical properties were calculated
on the basis of the voxels within the
drawn ROI. The ROI placement
(Online Supplemental Data) was per-
formed separately from fetal brain
maturity assessment by 2 different
investigators (investigator 1, with 2
years of experience and investigator 2,
with 1 year of experience with fetal MR
imaging), who were blinded to GA at
MR imaging.

Statistical Analyses
Statistical analyses were performed
using SPSS Statistics for Macintosh,

Version 25.0 (2017; IBM) at a significance level of a ¼ 5%
(P, .05).

To detect concordances of the fetal brain maturity assessment
of both raters and the quantitative measurements of both investi-
gators, we calculated an intraclass correlation coefficient. The
intraclass correlation coefficient values of $0.75 were considered
a strong correlation.25 In case of high concordances, the results of
1 rater were reported.

Pearson correlation analyses were performed to assess correla-
tions between the GA at MR imaging and the fetal brain maturity
total score, and the quantitative measurements of the fetal brain
stem.

RESULTS
Feasibility of SyMRI for Human Fetal Brain Imaging
Image data perceived to be of sufficient quality for qualitative and
quantitative analysis were provided in 12/52 (23.08%) (mean GA at
fetal MR imaging: 271 5 [SD, 31 1] weeks; range, 231 6–341 0
weeks) fetal MDME sequence acquisitions (Table and Online
Supplemental Data). In 40/52 (76.92%) cases, the image quality of
SyMRI-generated image data was highly degraded by fetal motion
(Online Supplemental Data).

Interrater Reliability
There was a strong correlation between the fetal brain maturity
total score assessed by both raters on SyMRI-generated MR imag-
ing data, 0.798 (95% CI, 0.279–0.943). There was no strong corre-
lation between the fetal brain maturity total score assessed by
both raters on conventionally acquired MR imaging data, 0.587
(95% CI, �0.055–0.898). There were strong correlations between
the quantitative measurements determined by both investigators,

FIG 1. Conventionally acquired (A and B) and SyMRI-generated (C and D) fetal MR image data of
comparable SIs: T2-weighted (A); snapshot inversion recovery (B); T2-weighted STIR (TR ¼
15,000ms, TE¼ 100ms, TI¼ 300ms) (C); and T1-weighted inversion recovery (TR ¼ 2500ms, TE¼
10ms, TI ¼ 1050ms) (D). Presentation of SyMRI-generated MR imaging contrasts based on the
default software settings for TR, TE, and TI.
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ranging from 0.879 (95% CI, 0.643–0.963) to 0.989 (95% CI,
0.962–0.997) (Online Supplemental Data).

Assessment of Fetal Brain Maturity
The fetal brain maturity total score based on the assessment of
SyMRI-generated MR imaging data showed a positive correlation
with the GA at fetal MR imaging (r¼ 0.915, P, .001). The fetal
brain maturity total score based on the assessment of convention-
ally acquired MR imaging data showed a positive correlation with
the GA at fetal MR imaging (rater 1: r¼ 0.966, P, .001; rater 2:
r¼ 0.915, P, .001) (Fig 3 and Online Supplemental Data).

The self-assessment of confidence by the investigating radiol-
ogists revealed a higher level of confidence for the assessment of
fetal brain maturity on the basis of conventionally acquired MR

imaging data (rater 1: median, 34; range, 33–34; and rater 2: me-
dian, 34.5; range, 31–40) compared with SyMRI-generated MR
imaging data (rater 1: median, 32.5; range, 19–38, and rater 2:
median, 33; range, 16–34) (Online Supplemental Data).

Physical Tissue Properties of the Brain Stem
Significant correlations were observed between the GA at fetal MR
imaging and the T2R (r ¼ –0.739, P¼ .006) and R2 (r¼ 0.790,
P¼ .002) determined in the medulla oblongata. No significant cor-
relations were observed between the GA at fetal MR imaging and
the T1R (r ¼ –0.340, P= .280), R1 (r¼ 0.467, P¼ .126), PD (r ¼
–0.071, P= .826), or MR imaging SI (r ¼ –0.264, P¼ .408) deter-
mined in the medulla oblongata. No significant correlations were
observed between the GA at fetal MR imaging and the T1R (r ¼

FIG 2. Presentation of conventionally acquired T2-weighted MR imaging contrasts (A, F, K, P) and quantitative MR imaging maps based on T1R (B,
G, L, Q), T2R (C, H,M, R), R1 (D, I, N, S), and R2 (E, J, O, T). The color-coding, according to the T1-/T2-relaxation parameters, is indicated by the col-
ored bars. The first (A, B, C, D, E) and the third columns (K, L,M, N, O) show MR imaging data from a fetus imaged at 321 4weeks’ GA. The sec-
ond (F, G, H, I, J) and the fourth columns (P, Q, R, S, T) show MR imaging data from a fetus imaged at 251 4weeks’ GA. Brain myelination is
indicated by a shortening of T1R/T2R (blue color-coding) and a prolongation of R1/R2 (yellow/orange color-coding). The color-coding of T1-
relaxation parameters shows a distinct myelination of the medulla oblongata (L, N) and the midbrain tegmentum/tectum (B, D) at 321 4weeks’
GA. At 251 4weeks’ GA, only the medulla oblongata shows remarkable myelination (Q, S). The color-coding of T2-relaxation parameters indi-
cates myelination of the medulla oblongata (M, O) at 321 4weeks’ GA. Beginning T2R-shortening and R2-prolongation are visible in the medulla
oblongata (R, T) at 251 4weeks’ GA and in the midbrain tegmentum/tectum (C, E) at 321 4weeks’ GA.
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–0.349, P¼ .266), R1 (r¼ 0.363, P¼ .247), T2R (r ¼ –0.461,
P¼ .131), R2 (r¼ 0.567, P¼ .054), PD (r ¼ –0.187, P¼ .561), or
MR imaging SI (r ¼ –0.376, P¼ .229) determined in the midbrain
(Fig 4 and Online Supplemental Data).

DISCUSSION
In this study, a novel quantitative MR imaging technique was used
in prenatal neuroimaging. Due to the time-consuming acquisition
of MDME sequences, the investigated approach was commonly
limited by fetal motion. However, in a certain fraction of successful
acquisitions, this technique provides multiple MR imaging data
based on a single scan. The results presented here suggest that pro-
vided that an MDME sequence acquisition of sufficient quality is
feasible, SyMRI-based image data supply additional multiparamet-
ric information to the assessment of fetal brain maturation.

The prenatal radiologic assessment of brain maturity is based
on morphologic features and changes in physical tissue properties
that lead to MR signal alterations.23,26 Cortical development begins
in the first trimester of pregnancy by cell proliferation in the gangli-
onic eminence, followed by neuronal migration through the hemi-
spheres to the surface of the brain.9,23,27 With time, postmigrational
maturation becomes evident by opercularization, gyration, and sul-
cation.28,29 In fetuses, primarily myelination processes alter the
appearance of white matter.30,31 Myelin is first seen in the spinal
cord and proceeds rapidly cephalad in its dorsal portions.26 In the
sixth month of pregnancy, myelination is already detectable in the
brain stem.26 At 32weeks of gestation, myelin-induced MR signal
changes appear supratentorially.26,32 Thus, cerebral development
progresses through a predictable pattern, underlying the scoring
system used in this study.15,23

FIG 3. Pearson correlation between GA at MR imaging (x-axis) and the fetal brain maturity total score (y-axis) on the basis of SyMRI-generated
(A and B) and conventionally acquired MR imaging data (C and D). Rater 1: A and C; rater 2: B and D.
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The assessment of fetal brain maturity based on SyMRI-gener-
ated and conventionally acquired MR imaging data revealed com-
parable results. However, overall, both investigating radiologists

reported a higher level of confidence when structural aspects of
brain maturation were evaluated on the basis of standard-of-care
images, because this technique achieves higher spatial resolution.

FIG 4. Pearson correlation between GA at MR imaging (x-axis) and quantitative MR imaging metrics (y-axis) determined by rater 1 (medulla
oblongata [A, B, E, F, I, J]; midbrain [C, D, G, H, K, L]).
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Most interesting, relatively high levels of confidence were observed
when SyMRI-generated maps were available for the evaluation of
brain myelination. Quantitative MR imaging mapping has already
been proved beneficial for the qualitative assessment of neonatal
brain myelination because the color-coding visualizes myelin-
induced changes more clearly.15 The availability of various MR
imaging maps for the evaluation of myelination might allow a
more consistent neuroradiologic assessment of fetal brain maturity.
In the present study, good/excellent concordances were observed
between the raters when SyMRI-generated data were used for the
evaluation of brain maturation.25,33 In contrast, on the basis of the
assessment of conventionally acquiredMR imaging contrasts, there
was only moderate/fair agreement.25,33

However, future development in sequence acceleration and k-
space sampling are needed to improve the applicability of this tech-
nique in a clinical, fetal imaging setting.34,35 Nonetheless, the prin-
ciple of MDME-based postprocessing would be of great benefit in
prenatal imaging. Moreover, this technique provides information
about tissue-specific properties, which enables the characterization
of brain myelination by a quantitative approach.11,17

In fetuses, the maximum quantities of myelin deposition are
detectable in the brain stem.26,32 Thus, this region best reflects
myelin-induced changes in tissue-specific properties. These phys-
ical characteristics are linked to visually perceptible MR imaging
SI values, which serve as the basis for the qualitative evaluation of
brain myelination.26 However, there was only a nonsignificant
decrease of the T2 SI values of the brain stem. This finding high-
lights the limitations of a visual evaluation of myelination based
on conventional MR imaging contrasts.15 Most interesting, sig-
nificant changes in T2-relaxation parameters of the medulla
oblongata were found within the developing brain stem. There is
evidence that the tightening of fully developed myelin sheaths
induces T2R-shortening/R2-prolongation.36-38 The medulla
oblongata shows beginning myelination at 24weeks’ GA.26

Hence, in contrast to other substructures of the brain stem, this
section already contains a relatively huge amount of fully devel-
oped fibers at the end of the third trimester.26,32 This fact could
also explain that T2R-shortening and R2-prolongation were less
pronounced in the midbrain. However, even though T1 MR
imaging metrics proved sufficient to quantify brain myelination
in neonates, T1R/R1 did not reveal significant changes prena-
tally.11 Generally, similar to T1R/T2R, the PD decreases as myelin
development proceeds.30 In this study, there were no significant
correlations between GA and spin density, confirming that PD
does not allow a reliable quantitative characterization of brain
myelination at early developmental stages.11,30

Delayed brain maturation is associated with neuropsychiatric
disorders.39,40 Quantitative MR imaging techniques generate val-
uable image data for the qualitative assessment of fetal brain ma-
turity. Furthermore, these MR imaging data provide novel
imaging biomarkers that allow a more differentiated assessment
of prenatal brain development. The evaluation of fetal brain ma-
turity is considered challenging in clinical neuroradiology, and
current qualitative assessment strategies are limited by the low
sensitivity of conventional MR imaging to small myelin quanti-
ties.26 Thus, imaging modalities that enable a more reliable char-
acterization of early developmental stages are greatly needed

because these may help clinicians predict future neurodevelop-
mental disabilities. Quantitative MR imaging metrics could pro-
vide the opportunity to track prenatal brain maturation and
detect developmental anomalies at an early stage, even though
these subtle signal alterations may not be detected qualitatively.26

However, this topic was outside the scope of this study but should
be addressed in the future.

This study has several limitations. By default, the fetal MR
imaging protocol did not include axial T1-weighted/snapshot
inversion recovery MR image acquisitions, limiting a direct com-
parison of both imaging modalities to a certain extent. The investi-
gated cohort was small and included pathologic brain scans.
Furthermore, the limited sample impeded a reliable between-group
comparison (fetuses with normal versus pathologic brains).
Although only MDME-based image data of superior quality were
included in this study, movement-related artifacts were still present
in most cases. These limitations might have had an impact on both
qualitative and quantitative analyses. Although strong correlations
were observed, there is still an impact of movement-related arti-
facts on qualitative and quantitative analysis that needs to be
clearly stated. Nonetheless, the results presented in this work are in
line with findings of previous studies that investigated the charac-
teristics of tissue-specific MR imaging properties at the early stages
of cerebral development.11,30

CONCLUSIONS
The results of this study indicate that given ideal imaging condi-
tions, MDME-based image data allow a qualitative assessment of
maturity-related changes of the fetal brain in utero. In addition,
this method makes tissue-specific quantitative information avail-
able and, therefore, provides quantitative imaging biomarkers for
fetal neuroimaging. Future technical advances in accelerating
multiecho sequence acquisitions will help to address current fetal
motion-related limitations of this approach. Together with other
recent advances in multicontrast, multiparametric estimation
techniques such as STrategically Acquired Gradient Echo
(STAGE),41 our data indicate that this line of research is promis-
ing and is likely to evolve as a new radiologic strategy to provide
complementary MR imaging information to the continuously
improving quality of fetal sonography.
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