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BRIEF/TECHNICAL REPORT
ADULT BRAIN

Fast and Robust Unsupervised Identification of MS Lesion
Change Using the Statistical Detection of Changes Algorithm

X T.D. Nguyen, X S. Zhang, X A. Gupta, X Y. Zhao, X S.A. Gauthier, and X Y. Wang

ABSTRACT
SUMMARY: We developed a robust automated algorithm called statistical detection of changes for detecting morphologic changes of
multiple sclerosis lesions between 2 T2-weighted FLAIR brain images. Results from 30 patients showed that statistical detection of changes
achieved significantly higher sensitivity and specificity (0.964, 95% CI, 0.823– 0.994; 0.691, 95% CI, 0.612– 0.761) than with the lesion-
prediction algorithm (0.614, 95% CI, 0.410 – 0.784; 0.281, 95% CI, 0.228 – 0.314), while resulting in a 49% reduction in human review time (P �

.007).

ABBREVIATIONS: LPA � lesion prediction algorithm; SDC � statistical detection of changes

Patients with multiple sclerosis undergo regular MRIs to mon-

itor disease activity and therapeutic response.1 Volumetric

brain MR imaging protocols with 1-mm3 isotropic resolution

have become increasingly common for imaging patients with MS

but result in hundreds of images, making detection of new lesions

or changes in lesion morphology very time-consuming for radi-

ologists. One approach to overcoming this problem is to extract

lesion masks with a lesion-segmentation algorithm2; these masks

are subtracted to yield a lesion-change mask. Alternatively, lesion

change can be detected on the subtraction of 2 images either by

humans3 or with the help of an algorithm relying on the subtrac-

tion signal and lesion geometry.4 While image subtraction can

substantially improve lesion contrast, separating lesion change

from background noise requires consideration of the statistical

properties of the signal and noise.

Here we propose a rapid and robust algorithm for statistical

detection of changes (SDC) in WM lesions. We describe a specific

SDC implementation using the Neyman-Pearson detector in sta-

tistics to optimally detect lesion change according to the MR im-

aging signal-to-noise property.

MATERIALS AND METHODS
SDC Lesion-Detection Algorithm
Given 2 MR images I1 and I2 of the same brain acquired at 2 time

points, the voxel-subtraction signal d � I2 � I1 (Fig 1) is assumed

to follow a Gaussian distribution N(�, �2) with mean � and SD �,

in which � can be estimated from the set of nonlesion WM voxels

on the subtraction image. Most of these voxels belong to the in-

tersection of the 2 WM masks obtained by brain segmentation

tools (such as FSL; http://www.fmrib.ox.ac.uk/fsl5) from T1-

weighted structural images. These masks typically exclude large

lesions that are hypointense on T1WI and therefore consist

mainly of nonlesion voxels (On-line Fig 1).

The MR imaging signal-to-noise property can be used to for-

mulate an optimal SDC of lesions as a composite statistical test

between 2 hypotheses of the following likelihood functions:

H0 (voxel is “unchanged”): p(d⎥ H0) � N(0, �2),

H1 (voxel is “changed”): p(d⎥ H1) � N(�, �2), � � 0.

In this work, the SDC test statistic was computed over a

3-voxel connected neighborhood based on the currently accepted

minimum MS lesion size requirement of 3 mm (3 voxels in

1-mm3 isotropic images)6 and on the assumption that the sub-

traction signals within this small neighborhood are similar. De-

noting the subtraction signals at the i-th voxel and its neighbor

voxels as di1, . . . , di3 and assuming � � 0 (positive change), the

test statistic ti can be computed from the log-likelihood ratio test7

and compared with a threshold � to make a decision:
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1) t i � �j � 1
3 d ij � H0

H1�.

Here�was chosen to control the false-positive rate PFP � P(ti � � � H0).

According to the Neyman-Pearson lemma, this test provides the

best detection power for a given PFP regardless of the unknown

mean � (uniformly most powerful detector).7

The test statistic is maximized over all possible neighborhoods

surrounding the voxel, to increase the sensitivity of lesion

detection:

2) t i � max(t ik, k � V i),

where Vi denotes a 3-voxel connected neighborhood system of the

i-th voxel (On-line Fig 2). Intuitively, this test statistic encodes in

probabilistic terms the expectation that a bright voxel on the sub-

traction image is more likely to be identified as “changed” if at

least 2 of its neighboring voxels also have high signals.

MR Imaging Experiment
This was a retrospective study of 30 patients with MS with 2 con-

secutive brain MRIs (mean scan interval, 267 � 104 days; range,

15– 410 days) performed on 3T scanners (Magnetom Skyra,

VE11A software; Siemens, Erlangen, Germany). The imaging

protocol consisted of an MPRAGE T1WI sequence for brain

structure (TR/TE/TI � 2300/2.3/900 ms, 1 mm3 isotropic) and a

T2WI FLAIR sequence for lesion detection (TR/TE/TI � 7600/

446/2450 ms, 1 mm3 isotropic). After skull removal and bias field

correction, FLAIR images were coregistered into the half-way

space using the FMRIB Linear Image Registration Tool algorithm

(FLIRT; http://www.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT)5 to ensure

that the degree of blurring introduced by coregistration was sim-

ilar between images because this similarity improves subtraction.

To account for changes in image contrast or dynamic range (eg,

due to different receiver gain settings or slight changes in imaging

parameters), we performed image-intensity normalization before

subtraction. The robust intensity range (second and 98th percen-

tiles, denoted as m and M, respectively) was computed for each

image. The image intensity of the second image I2 was then scaled

linearly to match that of the first image I1 as follows: I2,scaled �

�I2 � �, where � � (M1 � m1) / (M2 � m2) and � � [(M1 �

�M2) � (m1 � �m2)] / 2. In addition, brain GM, WM, and CSF

masks were obtained from the T1WI using the FMRIB Automated

Segmentation Tool (FAST; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FAST) algorithm.5 The SDC test statistic (Equations 1 and 2) was

then computed and thresholded to generate a change mask (Fig

1). The false-positive rate PFP was set to 0.0001, which means that,

on average, 50 of approximately 500,000 WM voxels may be in-

correctly labeled as “changed.” To reduce the number of false-

positives, we imposed additional constraints on lesion size (	3

voxels), location (lesions located within 2 voxels of the CSF bor-

der had to be part of a larger lesion that extended outside this

border), and intensity on the second FLAIR image (�2 SDs above

the mean normal-appearing WM intensity, ie, WM voxels that do

not appear bright on FLAIR were excluded).

For comparison, the lesion prediction algorithm (LPA),

part of the Lesion Segmentation Tool toolbox (LST; http://

www.applied-statistics.de/lst.html),8 was used to compute the

lesion masks from FLAIR images. This algorithm consists of a

binary classifier in the form of a logistic regression model

trained on the data of 53 patients with MS.8 The lesion masks

were then subtracted to obtain the change mask without any

human revision. Like the SDC, lesion changes of �3 voxels

were excluded.

Statistical Analysis
A neuroradiologist with 6 years of experience reviewed the 2

FLAIR and the subtraction images with the help of computer-

generated color ROIs that encompassed the detected lesion

changes (Fig 2). These were labeled as “true-positive” or “false-

positive.” The reader also reviewed the images outside these ROIs

to count the number of missed (false-negative) and unchanged

(true-negative) lesions. Lesion changes detected by the SDC and

LPA were presented in randomized order (both by subject and

by detection algorithm) to the reader, who was blinded to the

algorithm. The image review time was recorded for each sub-

ject and algorithm. A 2-tailed paired-sample t test was used to

compare the mean review time per subject of SDC and LPA.

The sensitivity and specificity of each method were calculated

using the generalized estimating equation logistic regression,

which accounts for the correlation among the measurements

within the same subject.9

RESULTS
Figure 2 shows an example of lesion detection, in which the LPA

generated more false-positives than the SDC and missed a small

FIG 1. Schematic of the proposed SDC lesion-change detection algorithm on the T2-weighted FLAIR subtraction image. One unchanged lesion
(yellow arrow) and 1 new lesion (red arrow) are correctly identified by the SDC. The algorithm automatically generates red ROIs, which
encompass the detected areas of change on the second FLAIR image to help the human reader quickly identify lesion changes.
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new lesion (On-line Fig 3). In 30 subjects, the SDC detected 344

lesion changes, or an average of 11 � 7 per subject (range, 4 –33),

while the LPA detected 1506 changes, or an average of 50 � 38 per

subject (range, 5–152). This result led to a 49% reduction in hu-

man review time per case (116 � 44 seconds; range, 50 –182 sec-

onds, by SDC versus 229 � 122 seconds; range, 76 – 447 seconds,

by LPA, P � .007). Despite fewer detected changes and decreased

review time, the SDC missed only 2 new lesions compared with 34

missed lesions by the LPA. The false-positive rate was 0.241 and

0.735 for SDC and LPA, respectively. With the neuroradiologist’s

reading used as the reference standard, the SDC achieved both

higher sensitivity (0.964; 95% CI, 0.823– 0.994 by SDC, versus

0.614; 95% CI, 0.410 – 0.784 by LPA) and higher specificity (0.691;

95% CI, 0.612– 0.761 by SDC, versus 0.281; 95% CI, 0.228 – 0.314

by LPA). Because the 95% CI for the SDC does not overlap that for

the LPA regarding both sensitivity and specificity, we concluded

that the difference between the 2 diagnostic methods is statisti-

cally significant. The Table summarizes the diagnostic accuracy of

each algorithm for lesion-change detection.

DISCUSSION
Our data show that the proposed SDC algorithm based on the

optimal Neyman-Pearson detector is a computer-assisted tool

that can improve the MS lesion detection rate and decrease image-

analysis time, thereby reducing the reader’s fatigue. The improved

robustness of the SDC can be attributed to its probabilistic ap-

proach, which uses the statistical properties of the FLAIR subtrac-

tion signal within a connected voxel neighborhood to derive an

optimal detection threshold for change detection. Although only

positive change (lesion growth) was considered, detecting nega-

tive change (lesion shrinkage) can be performed by swapping the

order of the FLAIR images. The algorithm was designed to be

highly sensitive (0.964 sensitivity) for serving as a screening tool

for new lesions while providing a reasonable specificity (only 1

of 3 unchanged lesions was misclassified, compared with 3 of 4

for the LPA). We also considered the longitudinal pipeline

implemented in the LST toolbox8 and found that it has much

lower sensitivity (0.386; 95% CI, 0.269 – 0.518) though higher

specificity (0.994; 95% CI, 0.985– 0.999) compared with the

LPA mask-subtraction method and therefore is less suited for

diagnostic purposes.

This initial feasibility study has several limitations. We have

focused on WM lesions to circumvent the limited contrast of cor-

tical or deep GM lesions on FLAIR. Further studies using pulse

sequences tailored for GM lesion detection (eg, double inversion

recovery at 7T) are warranted to evaluate the SDC for this lesion

cohort. Because most subjects (18/30) were imaged at approxi-

mately 1-year intervals, it was not possible to assess statistically

whether the accuracy of SDC and LPA varies with follow-up in-

tervals. Comparison with other algorithms and further evaluation

on the impact of image interpretation in larger patient imaging

datasets are also needed, particularly in those with abrupt ana-

tomic changes between scans, which can make image alignment

difficult.

CONCLUSIONS
The SDC lesion change detection algorithm has higher sensitivity

and specificity than the LPA algorithm.
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