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LETTERS

3D-Printed Patient-Specific Models for CT- and MRI-Guided
Procedure Planning

Image-guided, minimally invasive percutaneous ablations of

primary and metastatic tumors are increasingly being per-

formed in the head/neck and the spine. Thermal (radiofrequency,

laser, microwave, cryoablation) and nonthermal (irreversible

electroporation) ablation techniques provide symptomatic relief

in patients considered to be poor surgical candidates, but are as-

sociated with a steep learning curve and often require careful

planning given the individual patient’s anatomy.1 Safety is also a

concern,2 particularly as new application sites are explored, such

as the posterior spinal elements.3

3D printing is an emerging technology for presurgical plan-

ning and simulation, intraoperative navigation, and physician

training.4 Models of patient anatomy that are 3D-printed from

medical images provide spatial comprehension and tactile feed-

back with the ability to peel away layers of anatomy, providing

insight into underlying pathology. To date, 3D-printed simula-

tion of minimally invasive procedures has been limited to conven-

tional angiography procedures, where hollow, radiopaque vascu-

lar models can be readily 3D-printed. The next barrier to

overcome in this technology is the development of 3D-printing

materials and printing techniques that yield models visible with

other imaging modalities.

Last year, we began searching for polymeric materials4 that pos-

sess protons with sufficient mobility to escape substantial dipolar

broadening and ultrashort T2 values, so as to enable imaging of 3D-

printed models in clinical MR imaging systems.5 We aimed to lever-

age such materials to produce models exhibiting different image

characteristics for distinct tissues in both CT and MR imaging.
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FIGURE. 3D-printed model of the lumbar spine (bottom left panel) of a patient with L1 left lamina osteoblastoma, designed to replicate the
patient’s anatomy as seen in the patient’s diagnostic CT and MR imaging (top row). The outer black shell of the model is printed in a soft material
to mimic soft tissue properties. CT of the 3D-printed model demonstrates cortical and cancellous bone with differential CT Hounsfield units,
whereas MR imaging of the model demonstrates cancellous bone with intermediate and cortical bone with dark signal. Neural foramen and
nerve root, key structures monitored during MR imaging-guided cryoablation as this patient underwent, are clearly visualized in the MR imaging
of the printed model.
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We now bring to your attention this new technique to 3D-

print models replicating patient-specific, complex intertwined

anatomy in both CT and MR imaging. A model of a patient with

an L1 left lamina osteoblastoma was 3D-printed from the pa-

tient’s diagnostic CT and MR imaging. Tissues visualized (ie, seg-

mented) in each of the 2 diagnostic scans were spatially aligned to

produce a single model combining them. Different mixtures of

one MR imaging–visible5 and one non-MR imaging–visible ma-

terial, both of which are radiopaque, were used to produce a

model displaying the patient’s cortical and cancellous bone and

osteoblastoma (as visualized in the patient’s CT), spinal nerves,

CSF, and epidural fat (as visualized in the patient’s MR imaging)

with distinct signal characteristics in each imaging modality

(Figure).

This model can be used to simulate CT-guided power drilling

and subsequent MR imaging–monitored cryoablation (as ice ball

formation is not readily visualized on CT in vivo). This is, in fact,

the procedure that this patient underwent at our institution. The

signal intensity of the model in MR imaging allowed visualization

of the neural foramen and nerve root, key structures monitored

during this procedure.

Much further research remains in the field, including the de-

velopment of 3D-printed materials that better match tissue prop-

erties and image characteristics (eg, MR relaxation rates and CT

Hounsfield units). However, this new 3D-printing technique

holds great promise for image-guided procedure planning toward

assessing safety and efficacy and also, importantly, for hands-on

training where, at present, limited options, such as virtual reality

systems, are currently being explored.
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