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BACKGROUND AND PURPOSE: Spinal cord atrophy is a common feature of MS. However, it is unknown
which cord levels are most susceptible to atrophy. We performed whole cord imaging to identify the
levels most susceptible to atrophy in patients with MS versus controls and also tested for differences
among MS clinical phenotypes.

MATERIALS AND METHODS: Thirty-five patients with MS (2 with CIS, 27 with RRMS, 2 with SPMS, and
4 with PPMS phenotypes) and 27 healthy controls underwent whole cord 3T MR imaging. The spinal
cord contour was segmented and assigned to bins representing each C1 to T12 vertebral level.
Volumes were normalized, and group comparisons were age-adjusted.

RESULTS: There was a trend toward decreased spinal cord volume at the upper cervical levels in
PPMS/SPMS versus controls. A trend toward increased spinal cord volume throughout the cervical and
thoracic cord in RRMS/CIS versus controls reached statistical significance at the T10 vertebral level. A
statistically significant decrease was found in spinal cord volume at the upper cervical levels in
PPMS/SPMS versus RRMS/CIS.

CONCLUSIONS: Opposing pathologic factors impact spinal cord volume measures in MS. Patients with
PPMS demonstrated a trend toward upper cervical cord atrophy. However patients with RRMS
showed a trend toward increased volume at the cervical and thoracic levels, which most likely reflects
inflammation or edema-related cord expansion. With the disease causing both expansion and contrac-
tion of the cord, the specificity of spinal cord volume measures for neuroprotective therapeutic effect
may be limited.

ABBREVIATIONS: CIS � clinically isolated syndrome; EDSS � Expanded Disability Status Scale;
ICV � intracranial volume; MDEFT � modified driven equilibrium Fourier transform; MS � multiple
sclerosis; PPMS � primary-progressive multiple sclerosis; RRMS � relapsing-remitting multiple
sclerosis; SPMS � secondary-progressive multiple sclerosis; WC � whole cord

MS is a chronic progressive disease characterized by in-
flammation and demyelination of the brain and spinal

cord and atrophy of these structures.1,2 Atrophy occurs in all
subtypes of MS, including PPMS, SPMS, and RRMS forms.3

Progressive forms of MS are defined clinically as showing con-
tinual accumulation of neurologic deficits that are indepen-
dent of acute relapses. In RRMS, patients experience acute
relapses followed by variable recovery with stable disability
between relapse periods. Spinal cord atrophy in MS has been
demonstrated in both pathologic and neuroimaging investi-
gations. Pathologic studies of postmortem tissue have sug-

gested that most spinal cord atrophy is due to interneuronal
axonal degeneration within white matter.4-6 This degenera-
tion may be triggered by both local and remote demyelinating
lesions. Although neuronal loss can be extensive within sites of
local demyelination, its role in overall cord atrophy is thought
to be limited.4,5,7

The degree of MR imaging-defined spinal cord atrophy
is a proposed marker of disease severity, extent of neurode-
generation, and neuroprotective therapeutic effects. This is
apparent from several observations showing the following:
1) increased cord atrophy in PPMS versus RRMS pheno-
types,6,8-10 2) the link between cord atrophy and physical
disability,2,8-14 and 3) the ability to detect progressive cord
atrophy annually in longitudinal studies.9,15 While spinal
cord atrophy in the progressive subtypes of MS is evident,
the detection of atrophy in RRMS has been more elusive.
Multiple investigations have shown no significant differ-
ence between cervical spinal cord atrophy measures in pa-
tients with RRMS versus controls.10,12,15,16 A longitudinal
study of early RRMS was able to detect the development of
upper cervical spinal cord atrophy when individual patients
were serially imaged.15

Most prior studies have focused on detecting atrophy of the
upper cervical spinal cord and not the lower cervical or tho-
racic spinal cord. This focus is likely due to several factors:
1) MS lesions in the spinal cord affect the cervical more com-
monly than thoracic areas,4,17 2) the cervical cord is easier to
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assess by MR imaging due to its larger size and decreased mo-
bility compared with the thoracic cord,18 and 3) the notion
that clinical disability in MS is more dependent on cervical
than thoracic cord disease.19

Few studies have rigorously examined the topography of
cord atrophy to determine which sites across the whole cord
are most susceptible. Evangelou et al4 and Gilmore et al17

found significant atrophy in postmortem tissue in SPMS com-
pared with control patients within the upper and lower cervi-
cal and upper thoracic spinal cord, but not the lower thoracic
and lumbar spinal cord. Because of the limited correlation
between cervical cord atrophy and disability and the limited
sensitivity of cervical atrophy for tissue damage in the early
stages of MS,2,9 there is an impetus to further explore the effect
of tissue destruction in other areas of the cord.

The purpose of this study was to investigate the topography
of spinal cord atrophy at each vertebral level by using the
whole spinal cord 3T MR imaging in patients with MS. We
tested for the presence of atrophy in patients compared with
healthy controls. In addition, we explored the differences in
cord volume among the major MS clinical phenotype groups.

Materials and Methods

Subjects
This study was approved by an institutional review board. Partici-

pants were recruited by using an institutional review board-approved

advertisement and gave informed consent. The participant’s medical

record was examined, followed by a telephone interview to determine

suitability to enter the study. We excluded any potential participants

with a history of major medical, neurologic, or neuropsychiatric dis-

orders; current or prior history of substance abuse; or any condition

that precluded MR imaging. Subjects were also excluded if they had

congenital or acquired spinal canal narrowing on MR imaging to

avoid any confounding myelopathic effects on cord volume. All pa-

tients with MS had not experienced relapse or corticosteroid use

within the 4 weeks before study entry and had not initiated any dis-

ease-modifying therapy within the 6 months before study entry, to

avoid any confounding “pseudoatrophy” effects on central nervous

system volume.1 Total enrollment was 62 subjects: 27 with RRMS, 2

with CIS, 4 with PPMS, 2 with SPMS, and 27 healthy controls. MS

clinical phenotypes were defined as previously detailed.3 Recruitment

age was from 18 to 55 years. Subjects were well-matched for age and

sex. Subject demographics and clinical characteristics are shown in

On-line Table 1. Neurologic disability was assessed by using the

EDSS.20 Different aspects of these patients are being reported

separately.21

MR Imaging Acquisition
All subjects underwent whole spinal cord and brain imaging on the

same 3T MR imaging scanner (whole body scanner, GE Healthcare,

Milwaukee, Wisconsin) by using an identical scanning protocol

throughout the study. Spine MR imaging was performed with an

in-house developed spinal phased array coil by using 8 channels at

20-mT/m maximal gradient strength. Axial T2 fast spin-echo images

had the following parameters: FOV, 24 � 19 cm; matrix size, 256 �

256; section thickness, 3 mm with no gap; TR, 6116.66 ms; TE, 110.24

ms; echo-train length, 12; number of signal-intensity averages, 2; flip

angle, 90°; pixel size, 0.937 � 0.937 mm; and total acquisition time,

22.5–32.0 minutes. Images with this spinal MR imaging protocol have

been previously published.18

One hundred fifty to 200 axial sections were acquired on each

subject to cover the whole spinal cord. The whole spinal cord was

defined by using bony landmarks (foramen magnum rostrally to the

T12 vertebral body caudally). We stopped at the T12 level due to

variability in cord anatomy below this level. In a previous optimiza-

tion experiment, T1- and T2-weighted images showed similar reli-

ability and validity for assessing cord atrophy19; thus for efficiency’s

sake, we chose T2-weighted images going forward on the basis of the

ability to measure lesions and atrophy from the same pulse sequence.

Brain imaging for the purpose of calculating ICV was acquired with

an inversion-prepared spoiled gradient-echo sequence modified with

additional pulses to implement the MDEFT sequence.22,23 ICV mea-

surements were used for spinal cord volume normalization.

MR Imaging Analysis
MR imaging data were transferred to our laboratory where analysis

was performed by using the Jim software package (Version 5.0, Xi-

napse Systems, Northants, United Kingdom; www.xinapse.com).

Scans were anonymized and randomized, and analysis was performed

by an experienced observer (J.P.K.), who was unaware of clinical in-

formation. All axial sections were assigned to bins representing the

cervical and thoracic vertebral levels. The bin assignments were based

on the approach that, for example, the C3 level would include sections

extending from the superiormost aspect of the C3 vertebral body to

the inferiormost margin of the C3-C4 intervertebral disk. Spinal cord

measurements at the C1 and C2 vertebral levels were combined into 1

bin because the C1-C2 boundary was often indistinct. Sagittal recon-

structed images were cross-referenced to the axial images to allow

precise bin assignment based on vertebral levels. The full contour/

area of the spinal cord in the axial plane was defined by using an

edge-finding tool based on local thresholding. Manual adjustments

were applied where necessary. Representative cord images with cord

contours outlined are shown in Fig 1. The volume of each section was

determined by the Jim software package by multiplying the area by the

section thickness. Consistency and accuracy of measurements were

confirmed by independent and blinded review of the regions of inter-

est by a second experienced observer (A.A.). The relationship between

MR imaging findings and disability in these patients is being reported

as part of a separate study.21 3D MDEFT images of the head were

deskulled by using a semiautomated tool in the Jim software package

to calculate ICV. Spinal cord measurements were normalized to val-

ues of ICV and number of sections as per Arora et al.24

Statistical Analysis
All spinal cord volume measurements were divided by the number of

sections and the ICV to normalize the volume measurement across

patients. This approach was designed to eliminate differences based

on vertebral body height and craniospinal size among subjects. We

obtained similar results in the present study when the raw volumes

were compared (data not shown) instead of normalized volumes.

Only the normalized data are presented. Group differences in nor-

malized values were assessed by using linear regression to control for

age. The primary analysis was all patients with MS compared with

healthy controls, but exploratory additional analyses comparing pa-

tients with RRMS, PPMS, and healthy controls were also completed.

Due to the limited number of patients in each MS phenotype group,

CIS and RRMS patient data were combined as the RRMS group, and

PPMS and SPMS patient data were combined as the PPMS group.
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Both unadjusted P values and P values adjusted for multiple compar-

isons across the vertebral levels by using the Holm sequential proce-

dure25 are reported. All statistical analysis was completed in the sta-

tistical package R (R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Aus-

tria; http://www.R-project.org).

Results

All Patients with MS versus Controls
When we considered the MS group collectively, spinal cord
volumes were significantly increased versus controls at the T9,
T10, and T11 vertebral levels (Table 2 and Fig 2), but these
results failed to remain statistically significant after correcting
for multiple comparisons. There were no significant differ-
ences at the remaining thoracic levels, at any of the cervical
levels, or in the whole cord (all, P � .05) (On-line Table 2 and
Figs 2 and 3).

Patients with PPMS versus Controls
Spinal cord volumes were significantly decreased in patients
with PPMS/SPMS versus controls at the C1-C2 and C3 verte-
bral levels (On-line Table 3 and Fig 2), but these results failed
to remain statistically significant after correcting for multiple
comparisons. There were no significant differences at the re-
maining cervical levels, at any of the thoracic levels, or in the
whole cord (all P � .05) (On-line Table 3 and Figs 2 and 3).

Patients with RRMS versus Controls
Spinal cord volumes were significantly increased in patients
with RRMS/CIS versus controls at the C5, T7, T8, T9, T10, and
T11 vertebral levels (On-line Table 3 and Fig 2); the difference
at the T10 level remained statistically significant after correct-
ing for multiple comparisons. Of note, every other vertebral
level showed a trend toward increased spinal cord volume in
RRMS/CIS compared with controls after correction for mul-
tiple comparisons (On-line Table 3 and Fig 2). There was a
trend but no significant increase in whole cord volume in pa-
tients with RRMS/CIS versus controls (On-line Table 3 and
Fig 3).

Patients with PPMS versus RRMS
Spinal cord volumes were significantly decreased in patients
with PPMS/SPMS versus those with RRMS/CIS at all cervical
vertebral levels and the T1, T6, T7, T9, and T10 vertebral levels
(On-line Table 3 and Fig 2); the differences at C1-C2 and C3
remained statistically significant after correcting for multiple
comparisons. In addition, whole spinal cord volume was sig-
nificantly decreased in the progressive group (On-line Table 3
and Fig 3).

Discussion
This study showed that there was statistically significant cord
expansion at the T10 vertebral level in RRMS/CIS versus con-
trols and statistically significant cord atrophy at the C1-C2 and
C3 vertebral levels in PPMS/SPMS versus RRMS/CIS, after
correction for multiple comparisons. There were non-statisti-
cally significant trends toward cord expansion at all other ver-
tebral levels in RRMS/CIS versus controls and trends toward
cord atrophy at all other vertebral levels in PPMS/SPMS versus
RRMS/CIS. Together, these results suggest that spinal cord
atrophy is more prominent in patients with PPMS than relaps-
ing forms of MS. These findings are, in general, in agreement
with prior studies showing that patients with progressive sub-
types are more prone to developing spinal cord atrophy.2,8,10

There was another interesting and somewhat unexpected
finding in our study. Patients with RRMS/CIS showed a trend
toward increased spinal cord volume at all vertebral levels in
comparison with healthy controls (Fig 2). Several prior studies
have failed to find spinal cord atrophy in patients with RRMS
versus healthy controls.12,13,16,26 A longitudinal study of early
RRMS was able to detect the development of upper cervical
spinal cord atrophy when individual patients were serially
scanned; however, the rate of atrophy did not correlate with
clinical disability.15 Mann et al16 found no significant differ-
ence in cervical spinal cord cross-sectional area in patients
with RRMS compared with controls, and a trend toward in-
creased cervical spinal cord cross-sectional areas in this study
was interpreted as possibly related to inflammation and edema
in the RRMS spinal cords.

The increase in cord volume in patients with RRMS/CIS
versus healthy controls may represent cord inflammation and
edema that would mask (offset) any destructive changes such
as axonal loss, which would otherwise result in atrophy.16 Sim-
ilar findings have been noted in cerebral white matter. In a
longitudinal study of early RRMS, Dalton et al27 used MR
imaging to segment cerebral gray and white matter and found
a significant decrease in gray but not white matter volume in

Fig 1. Representative spinal MR imaging scans and segmentation. T2-weighted fast
spin-echo axial images obtained at 3T of the upper cervical (A), lower cervical (C ), and
thoracic (E ) spinal cord are shown. High contrast between the spinal cord (hypointense) and
the surrounding CSF (hyperintense) is noted. Semiautomated spinal cord contour maps are
shown for the identical sections in B, D, and F. The patient is a 29-year-old woman with
RRMS of 7 years’ disease duration on treatment with interferon �-1a at the time of
imaging, with no physical disability (EDSS score of 0).
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patients in the first 3 years after their first attack of demyelina-
tion. Significantly increased white matter volume in early
RRMS was thought to be the result of inflammation/edema.
Supporting this mechanism from the opposite perspective is
the finding of cerebral “pseudoatrophy” in the first few
months immediately following initiation of immune-modify-
ing or immunosuppressive therapies such as interferon � and
natalizumab in patients with RRMS.28 This most likely reflects
a net loss of inflammatory cells and edema due to therapeutic
effects rather than tissue destruction.1,29

While none of our patients were experiencing acute re-
lapses in the 4 weeks before MR imaging, we did not perform
postgadolinium imaging or an assessment of the relationship
between T2 hyperintense lesions and cord volume at the same
vertebral levels. Thus, the precise mechanisms leading to cord
expansion in our patients with RRMS/CIS is unclear. Because
opposing pathologic factors are likely influencing the degree
of spinal cord expansion or contraction, the specificity of these

measurements for neuroprotective therapeutic effect may be
limited in the early stages of MS. However, we urge caution in
generalizing our findings to larger RRMS cohorts because our
patients with RRMS were mildly disabled and may not be fully
representative.

The general and overall clinical consequences of MS are
typically measured by comprehensive scales of disability, such
as the EDSS score.20 In the present study, our interest was in
level-specific spinal cord damage. Thus, we did not explore
relationships between EDSS and local cord atrophy, with the
thought that the EDSS receives contributions from a diverse
anatomic distribution of damage. The integrity of spinal cord
axons can be measured via somatosensory-evoked potentials
and other similar neurophysiologic investigations. Due to the
high attenuation of fiber tracts within the spinal cord, cord
volume loss can produce greater disability compared with
equivalent volume loss within the cerebral hemispheres.30,31

Future studies on spinal cord atrophy in MS should test cor-

Fig 2. Spinal cord volume (plotted as volume/section/ICV) segmented by vertebral level. Group comparison P values with and without correction for multiple statistical tests are presented
in On-line Tables 2 and 3. Bar heights represent means; error bars represent SDs.

Fig 3. Whole spinal cord volume (plotted as volume/section/ICV). Whole spinal cord volume is 12.6% smaller in PPMS/SPMS compared with RRMS/CIS. No significant difference in whole
spinal cord volume is detected between RRMS/CIS and controls, PPMS/SPMS and controls, or all MS and controls. Group comparison P values with and without correction for multiple
statistical tests are presented in On-line Tables 2 and 3. Bar heights represent means; error bars represent SDs.
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relations between the degree of atrophy at specific levels and
measures of neurophysiologic function and clinical disability
that are thought to be related to cord dysfunction at those
specific levels.

Statistical analysis in this study showed that many of the
observed group differences failed to remain statistically signif-
icant after correcting for multiple comparisons. However,
many of these differences showed trends toward significance,
which may have reached significance with a larger sample size.
Thus the study may have been underpowered to detect the full
biologic effects at all vertebral levels. In addition, the trends
observed in the differences between the groups showed that
various spinal regions had consistent trends. The trends ob-
served in our study should serve as a basis for larger studies in
the future to confirm and extend our findings.

In this study, image quality did not allow reliable parsing of
gray and white matter within the spinal cord, so the relative
contribution of volume changes of gray matter versus white
matter remains in question. As the spatial resolution and con-
trast capabilities of MR imaging continue to advance, future
studies may allow segmentation and quantification of gray
and white matter atrophy within the spinal cord. Advanced
MR imaging techniques such as spectroscopy, diffusion tensor
imaging, or magnetization transfer imaging could be com-
bined with structural MR imaging to determine the relative
contributions of axonal damage, demyelination, and gliosis to
atrophy.32 Together these investigations will allow a better un-
derstanding of similarities and differences in the pathophysi-
ology of progressive and relapsing forms of MS.

Conclusions
3T MR imaging demonstrated a trend toward decreased spinal
cord volume in progressive forms of MS and a trend toward
increased spinal cord volume in relapsing forms of MS. With
the disease causing both expansion and contraction of the spi-
nal cord, the utility of cord volume measurement in monitor-
ing destructive aspects of the disease in patients with early
relapsing phenotypes may be limited. These results need to be
confirmed in larger studies.
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