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BACKGROUND AND PURPOSE: The early postnatal period is perhaps the most dynamic phase of white
matter development. We hypothesized that the early postnatal development of the corpus callosum
and corticospinal tracts could be studied in unsedated healthy neonates by using novel approaches to
diffusion tensor imaging (DTI) and quantitative tractography.

MATERIALS AND METHODS: Isotropic 2 � 2 � 2 mm3 DTI and structural images were acquired from
47 healthy neonates. DTI and structural images were coregistered and fractional anisotropy (FA), mean
diffusivity (MD), and normalized T1-weighted (T1W) and T2-weighted (T2W) signal intensities were
determined in central midline and peripheral cortical regions of the white matter tracts of the genu and
splenium of the corpus callosum and the central midbrain and peripheral cortical regions of the
corticospinal tracts by using quantitative tractography.

RESULTS: We observed that central regions exhibited lower MD, higher FA values, higher T1W
intensity, and lower T2W intensity than peripheral cortical regions. As expected, MD decreased, FA
increased, and T2W signal intensity decreased with increasing age in the genu and corticospinal tract,
whereas there was no significant change in T1W signal intensity. The central midline region of the
splenium fiber tract has a unique pattern, with no change in MD, FA, or T2W signal intensity with age,
suggesting different growth trajectory compared with the other tracts. FA seems to be more depen-
dent on tract organization, whereas MD seems to be more sensitive to myelination.

CONCLUSIONS: Our novel approach may detect small regional differences and age-related changes in
the corpus callosum and corticospinal white matter tracts in unsedated healthy neonates and may be
used for future studies of pediatric brain disorders that affect developing white matter.

The early postnatal period is perhaps the most dynamic
phase of brain development. Cortical gray matter volumes

increase significantly in the first weeks after birth,1 consistent
with synapse development.2 Myelination of white matter also
proceeds rapidly.3 Concurrent with structural brain develop-
ment is an equally rapid development of a wide range of cog-
nitive and motor functions,4 and it has been proposed that
myelination parallels functional maturation.5 Postmortem
studies indicate myelination occurs in proximal pathways be-
fore distal pathways, in central sites before poles, and in the
occipital poles before the frontotemporal poles.3,6

The myelination status of white matter on MR imaging is
determined by the relative intensity of T1-weighted (T1W)
and T2-weighted (T2W) signals.3,7 The relationship of the

composition and the microscopic structure of brain tissue and
its T1 and T2 signal intensity is very complex and not well
understood, especially in the context of the developing
brain.3,7 Diffusion tensor imaging (DTI) has provided a new
approach to understanding the development of white matter
tracts. Results from studies in premature infants using region-
of-interest approaches indicate that mean diffusivity (MD) in
central white matter tracts decreases with age, whereas frac-
tional anisotropy (FA) increases.8-10 Studies of older children
show rapid maturation of MD and FA values in the corpus
callosum and internal capsule over the first 2 years of life.11-14

In normal neonates, we observed a lag in peripheral cortical
white matter maturation compared with central white matter
tracts.15,16 A recent study reported generally rapid changes of
FA and fiber tract size in the first 12 months, with relative
stability after 24 months.17

Most DTI studies in children have been limited to 2D re-
gion-of-interest approaches that do not capture the complex-
ity of 3D white matter tracts. The feasibility of quantitative
tractography has been demonstrated in premature infants18,19

and in infants with perinatal hypoxic ischemia.20 We hypoth-
esized that the early postnatal development of the corpus cal-
losum and corticospinal tracts could be studied in unsedated
healthy neonates with DTI and quantitative tractography. We
used a 3T scanner (which provides improved DTI tractogra-
phy compared with 1.5T21), a novel quantitative analysis of
complex regions of interest,22,23 along with coregistration of
DTI images with structural T1W and T2W images to study the
development of diffusion properties in the corpus callosum
and the corticospinal tracts and their relationship to T1W and
T2W intensities.
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Materials and Methods

Subjects
This study was approved by the Institutional Review Board of the

University of North Carolina (UNC) School of Medicine. Infants

scanned for this study were healthy control subjects for a larger study

of prenatal and neonatal brain development in children at high risk

for neurodevelopmental disorders. Control mothers were recruited

during the second trimester of pregnancy from the outpatient Obstet-

rics and Gynecology Clinics at UNC Hospitals. Exclusion criteria

were the presence of abnormalities on fetal sonography or major

medical or psychotic illness in the mother. Singleton subjects with a

gestational age at birth of 37 weeks or older who had both T1W,

T2W/proton density, and DTI scans that were free of major motion

artifacts were included in this analysis (n � 49). Additional exclusion

criteria for this analysis included major delivery or neonatal compli-

cations or significant central nervous system (CNS) abnormality on

MR imaging (n � 2). Fourteen subjects had small incidental subdural

hematomas or other bleeds, which are present in approximately 25%

of vaginal births24; these subjects were included in the analysis.

The final study sample (n � 47) included 28 boys and 19 girls;

ethnic composition was 39 white and 8 African American. There were

no significant sex differences in the gestational age at birth (mean �

SD: boys, 39.8 � 0.9 weeks; girls, 39.5 � 1.1 weeks; P � .3230) or

gestational age at MR imaging (boys, 43.1 � 1.7 weeks; girls, 42.6 �

1.6 weeks; P � .3146). However, there was a significant difference in

birth weight between boys and girls (3653.1 � 450.6 g vs 3146.2 �

243.6 g, respectively; P � .0001).

Image Acquisition
Neonates were scanned unsedated, swaddled, fitted with ear protec-

tion, and with their heads secured in a vacuum-fixation device. T1W

structural pulse sequences were either a 3D magnetization-prepared

rapid acquisition of gradient echo ([MP-RAGE] TR/TI/TE/flip angle,

1820 ms/400 ms/4.38 ms/7°, respectively) or a 3D spoiled gradient

(fast low-angle shot [FLASH], TR/TE/flip angle, 15 ms/7 ms/25°, re-

spectively). Proton attenuation and T2W images were obtained with a

turbo spin-echo sequence (TSE; TR/TE1/TE2/flip angle, 6200 ms/20

ms/119 ms/150° respectively). Spatial resolution was 1 � 1 � 1-mm3

voxel for T1-weighted images, and 1.25 � 1.25 � 1.5-mm3 voxel with

0.5-mm intersection gap for proton attenuation/T2-weighted images.

A single-shot echo-planar spin-echo DTI imaging sequence was used

with the following parameters: TR, 5200 ms; TE, 73 ms; thickness, 2 mm;

in-plane resolution, 2 � 2 mm2, and 45 sections. Seven images were

acquired for each section, one without diffusion gradient (b � 0), and the

remaining 6 with b � 1000s/mm2 and diffusion gradients along {1/�2,

0, 1/�2}, {�1/�2, 0, 1/�2}, {0, 1/�2, 1/�2}, {0, 1/�2, �1/�2},

{1/�2, 1/�2, 0}, and {�1/�2, 1/�2, 0}, separately. To improve signal-

to-noise ratio for the DTI images, 5 separate sets of images with 2 averages

in each set were acquired. This approach shortens data acquisition time

(1.18 min/set) and minimizes motion artifacts.

Preprocessing of Diffusion Tensor Images
Motion can be a challenge when imaging unsedated neonates; averaging

DTI scans on the scanner provides insufficient quality for quantitative

tractography. To address this issue, each individual directional gradient

image was screened off-line for motion artifacts using a novel automatic

DTI quality control tool, DTIchecker (http://www.ia.unc.edu/dev). The

tool reads the entire DTI dataset, subdivides the images into volumetric

stacks of individual gradient directions and repeated acquisitions, and

checks the image sections in each volume for artifacts and errors, includ-

ing intensity artifacts, missing and corrupted sections, and motion arti-

facts between repeated acquisitions. Images reported as problematic were

visualized and compared with neighboring sections and to repeated im-

ages in the same gradient directions. Translational and rotational errors

were corrected within limits specified by the user, typically 2–3 voxels for

translation and 2° maximum for rotation before voxel-by-voxel averag-

ing the repeated acquisitions.

Image Analysis
Quantitative Analysis of Fiber Tracts. We developed a new set of

tools for computation of FA and MD maps, tractography (following a

concept developed by Mori et al25 and Xu et al26), fiber clustering, and

parametrization.22,23,27,28 Tracts are initialized by drawing source and

target regions of interest on FA images. The fiber tracking tool22,23,29

(http://www.ia.unc.edu/dev) reads the set of diffusion image chan-

nels, calculates the tensor field, reads the region-of-interest image,

and performs the tracking. The resulting sets of streamlines are stored

as lists of polylines that also carry the full tensor information at each

location. The method has been tested on splenium and genu tracts in

a preliminary feasibility neonate DTI study27 and was validated in

repeated DTI scans of healthy adult volunteers.30

For this study, the cross-sectional regions of interest were defined

as follows (Fig 1): for the genu and splenium of the corpus callosum,

the seed points were the anteriormost and posteriormost aspects of

the corpus callosum in the midsagittal plane of the FA image, and one

sagittal section on either side. Central regions of the genu (G0) and

splenium (S0) were defined as the midsagittal plane; cortical regions

were defined as distances from midsagittal plane on the left and right

aspects of the fiber tracts: 21 mm from the midsagittal plane for the

genu (G21 and G�21), and 24 mm from the midsagittal plane for the

splenium (S24 and S�24). For the corticospinal tract, the seed region

was defined on the FA image by selecting a region containing the

posterior limb of the internal capsule 3 consecutive axial sections.

After the tracking, the subgroup/cluster of interest leading to the mo-

tor cortex was manually separated. The plane for the fiber plots (or-

Fig 1. Visualization of the 4 fiber tracts in axial and sagittal views, with overlay of location
selected for statistical analysis. Genu (green), splenium (yellow), and left and right motor
tracts (cyan) are shown in a 3D display combined with the DTI FA image. CS-12, central
corticospinal tract; CS9, cortical corticospinal tract; G0, central genu; G21, cortical genu;
S0, central splenium; S24, cortical splenium.
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thogonal to the fibers, defining the origin) was placed at the top of the

corpus callosum in the midsagittal plane; CS9 and CS-12 regions were

9 and 12 mm above and below this plane, respectively. Distances from

the central planes to the cortical regions of interest in each tract were

chosen so that they had a similar distance from the cortical surface.

CS-12 was chosen to capture a region with early myelination.

Reliability. Reliability of the semiautomatic, tractography-based

method was tested and compared with manual technique by mea-

sures of intraclass correlation (ICC). Five typical image datasets were

selected, replicated 3 times, and analyzed in a randomized order.

Three trained raters used the quantitative tractography method de-

scribed above and a manual technique (ITK-SNAP tool31) to select

regions of interest and to calculate mean FA values per region. Using

a mixed model with random effects for image and raters, the ICC’s

calculated the proportion (in percent) of the total variability in FA

measures that can be explained by the variability between the image

sets and regions of interest (ROIs) within the same rater (intrarater

reliability) or across different raters (inter-rater reliability).32

The tractography-based approach produced high-resolution FA

measures along tracts (in millimeters from a coordinate origin) at

both central and peripheral regions along fibers. The intrarater and

inter-rater reliability among the central fiber regions was 0.93 and

0.76, respectively, for the tractography-based approach, similar to

0.95 and 0.77, respectively, for the manual approach. However, man-

ual region drawing failed to determine the off-center peripheral re-

gion locations for splenium and genu because the shape and geometry

of individual tracts were not discernible on FA images. The intrarater

and inter-rater reliability for the tractography-based approach was

0.93 and 0.72, respectively, among these regions.

Combined Analysis of Fiber Tracts Properties in DTI and
Structural MRI

Image Calibration. T1W scans were normalized by using T1W

values for fatty tissue between the skull and the skin with a 3D level-set

segmentation procedure31 for each subject. Fatty tissue in axial sec-

tions of the upper part of the head was seeded, and level-set evolution

grew these seeds to capture fatty tissue surrounding the skull. The

mean intensity within the resulting thin regions was used as the nor-

malization standard for T1W scans. The differences observed be-

tween normalized image data of MPRAGE and FLASH T1 sequences

were further corrected by adjusting the group means of FLASH to

those of MPRAGE, calculated for each region separately. T2W scans

were normalized with T2W values of ventricular CSF. The mean in-

tensity values of these structures were then used as the normalization

standard for T2W scans.

Coregistration of DTI and Structural MR Imaging. A nonlinear

registration package33,34 that uses a 3D spline deformation model and

mutual information as the image match criterion was used to coregister

images. Using a cascaded linear followed by nonlinear deformation, the

T2W structural image of each subject was deformed into the baseline

image of the DTI scan. Because T1W and T2W structural scans were

already coregistered as part of our parallel brain tissue segmentation, the

same transformation was applied to map the T1W scan to DTI. Quality

control based on a qualitative visual check of overlaid coregistered sets of

FA, MD, baseline, T1W, and T2W scans showed that the nonlinear reg-

istration step was crucial to bring image modalities sufficiently close for

combined analysis. The one-to-one mapping of T1W and T2W images to

DTI images allows a straightforward mapping of intensities obtained

from T1W and T2W scans to each location represented by the set of fiber

tracts. Mean values within cross-sections along the axis of fiber tracts

were then calculated for FA, MD, T1W, and T2W parameters and re-

ported for statistical analysis.

Statistical Analysis
For cross-sectional analysis of sex differences of any parameter in any

regions, 2-group, 1-way analysis of covariance (ANCOVA) was used,

with gestational age at MR imaging used as a covariate. For examina-

tions of asymmetry in each region, we used an ANCOVA on differ-

ences to right and left volume differences within subject, with and

without controlling age at MR imaging and age from birth to MR

imaging as covariates. Analyses were repeated separately for each sex.

For comparisons of genu, splenium, and left corticospinal tract in any

points, we fit mixed models with region as the within-subject variable

of interest without any other covariates. For the developmental tra-

jectory model, we fit mixed models with region as the within-subject

variable of interest and age at MR imaging as a continuous predictor.

In this model, we examined difference in slope between regions with

contrasts. To examine the relationship of T1W and T2W signal inten-

sity to the DTI parameters in each region, we correlated linearly T1W

and T2W with each DTI parameter.

Results
For simplicity of description and analysis, we focused on the left
cortical and central regions of the corpus callosal fiber tracts pass-
ing through the genu and splenium and the central and cortical
regions of the left corticospinal tract. There were statistically sig-
nificant differences only between the right and left cortical region
of the genu fiber tract in MD (mean � SD; 914.40 � 1.47 versus
14.15 � 1.66, respectively; P � .0080), T1W intensity (44.24 �
5.66 versus 43.27 � 5.41, respectively; P � .0001), and T2W in-
tensity (1216.08 � 82.82 versus 1174.20 � 88.00, respectively; P
� .0001); the differences were small in absolute terms. There was
no difference between the left and right cortical regions of the
splenium or between the left and right central or cortical regions
of the corticospinal tracts. There were no sex differences of any
parameter in any region (data not shown).

MD was significantly different across all ROIs studied in
the genu, splenium, and left corticospinal tract (ANCOVA
P � .0001; Fig 2). Comparison of individual regions revealed
that the MD of the central splenium (S0) was significantly
higher than the central region of the genu (G0; P � .05). Like-
wise, the peripheral region of the splenium (S24) had a higher
MD than the peripheral region of the genu (G21; P � .05). The
myelinated central region of the left corticospinal tract (CS-
12) had the lowest MD compared with all other regions, in-
cluding the peripheral region of the corticospinal tract (SC9;
P � .001 for each comparison).

FA was significantly different across all ROIs studied in the
genu, splenium, and left corticospinal tract (ANCOVA P �
.0001; Fig 3). The central portion had a significantly higher FA
than the peripheral region genu (P � .001), splenium (P �
.001), and left corticospinal tract, (P � .001). The central por-
tion of the splenium (S0) had significantly higher FA values
than the central regions of the genu (G0, P � .001) or the
myelinated central region of the corticospinal tract (CS-12;
P � .001). Finally, the FA of the peripheral region of the sple-
nium (S24) was significantly higher than the peripheral region
of the genu (G0; P � .001).

In the relatively narrow age range of our sample, we were
able to detect age-related changes in FA and MD in fibers of
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the genu and corticospinal tract (Fig 3). In both central and
peripheral cortical portions of the genu and the left corticospi-
nal tract, FA increased significantly and MD decreased signif-
icantly with increasing age at MR imaging. It is noteworthy
that this maturational pattern is not present in the splenium,
where FA and MD were not significantly changed with age in
either the central or peripheral cortical regions.

T1W signal intensity was significantly different across all
white matter tract regions (ANCOVA, P � .0001; Fig 4). T1W
signal intensity was significantly higher in the central com-
pared with the peripheral regions of the genu (P � .001), sple-
nium (P � .001), and corticospinal tract (P � .001). The cen-
tral region of the corticospinal tract had a significantly higher
T1W signal intensity than all other regions (P � .001 for each
region).

T2W signal intensity was significantly different across all
white matter tract regions (ANCOVA, P � .0001; Fig 4). T2W
signal intensity was significantly lower in the central compared
with the peripheral regions of the genu (P � .001), splenium
(P � .001), and corticospinal tract (P � .001). The myelinated
central region of the corticospinal tract had significantly lower
T2 intensity than all other regions (P � .001 for each region).

T1W signal intensity did not change with age in the narrow
age range of our cohort in any region (Fig 4). T2 signal inten-
sity significantly declined with age in all regions except the
central region of the splenium (Fig 4).

We studied the relationship of T1W and T2W signal inten-
sity to the DTI parameters MD and FA in each white matter
tract region. For T1W signal intensity, there was no significant
correlation with MD, except in the cortical region of the sple-
nium (r2 � 0.1602; P � .0053; Fig 5, supplemental on-line
figure). There were no significant correlations of T1 signal
intensity with FA in any region (P � .05 for each region; Fig 5,
supplemental on-line figure). In contrast, T2 signal intensity
was positively correlated with MD and negatively correlated
with FA in each region (Fig 6, supplemental on-line figure).

Discussion
Our results are consistent with general
principles of white matter maturation in
the developing brain observed in previ-
ous postmortem and imaging studies—
central regions of white matter tracts
were more mature and organized than
peripheral cortical regions, with lower
MD and higher FA values. This pattern
also was observed with T1W and T2W
signal intensity; central regions of each
white matter tract had higher T1W inten-
sity and lower T2W intensity than pe-
ripheral cortical portions.

Comparison of the splenium and the
genu is consistent with the posterior-to-an-
terior maturation of white matter described
in previous studies.3,6 In both the central
and peripheral cortical regions, FA is

higher, T1W signal intensity is higher, and T2W signal intensity is
lower compared with the genu, reflecting more mature white
matter tracts. The exception to this pattern is MD, which is actu-
ally higher in both the central and peripheral cortical regions of
the splenium compared with the genu.

In the white matter tracts of the genu and corticospinal
tract, we detected the expected changes related to increasing
age: decreasing MD, increasing FA, and decreasing T2W signal
intensity. In the genu and corticospinal tract, there was no
significant change in T1W signal intensity with age. Therefore,
T2W signal intensity appears to be more sensitive to matura-
tional events in white matter than the T1W signal intensity, at
least during the narrow age range of our neonatal cohort. This
finding is consistent with a previous study of white matter
tract maturation in rodents that reported T2W sequences
shortened but T1W sequences did not change, even in the
presence of myelination.35 Our study suggests that T2W signal
intensity does decrease significantly in white matter tracts
even before myelination is grossly evident on MR imaging.

We were surprised not to observe this maturational pattern in
the splenium. There is no change in MD or FA with age in either
the central or peripheral cortical regions. In the central region of
the splenium, T2W signal intensity did not decrease with age, and
T1W signal intensity decreased, a pattern different from that ob-
served in the genu and corticospinal tract. The change in T1W
and T2W signal intensity with age in the peripheral cortical re-
gion of the splenium was similar to that in other regions. Taken
together, these findings suggest that there is a different growth
trajectory in the splenium during the neonatal period compared
with the genu or corticospinal tract. In the nonhuman primate,
myelination occurs more rapidly in the posterior regions of the
corpus callosum compared with the anterior regions.36 Approx-
imately 70% of axons in the corpus callosum also are eliminated
in the first 4 months after birth; the posterior region of the corpus
callosum has a larger decline in axon attenuation than other re-
gions.36 We observed that cortical gray matter growth was much
faster in the occipital and parietal regions compared with the pre-

Fig 2. Mean diffusivity, fractional anisotropy, T1w and T2w
signal intensity in the major white matter tracts of the
neonate (n � 47). See “Results” for details of statistical
analysis.
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frontal regions,1 suggesting a posterior-to-anterior functional
maturation of gray matter that also may be evident in the white
matter tracts of the corpus callosum.

The relationship between diffusion properties and myelina-
tion of white matter tracts is not clear. We observed high degrees
of FA that increased with age in the unmyelinated central regions
of the genu and splenium; in fact, the FA of the unmyelinated
central splenium was significantly higher than the myelinated
central region of the corticospinal tract. Anisotropy has been
demonstrated in unmyelinated fiber tracts in garfish and lobster,

indicting that the structure of fibers can give rise to anisotrophy
independent of myelination.37 Anisotropy also has been observed
in white matter tracts of the CNS in rats35,38 and in premature
humans.8,9 A recent study in rabbits reported that FA increased
before and reached a plateau after the onset of myelination, sug-
gesting that immature oligodendrocytes may contribute to struc-
tural and functional maturation of white matter fiber tracts be-
fore myelination.39

The maturation of FA appears to be related more to the
organization of the fiber tracts than to the presence of myelin

Fig 3. Maturation of mean diffusivity (MD) and fractional anisotropy (FA) in white matter tracts of the genu, splenium, and left corticospinal tract (n � 47). In the genu, MD was significantly
correlated with age in the central (r2 � 0.2392; P � .0005) and peripheral (r2 � 0.3781; P � .0001) regions. FA also was significantly correlated with age in the central (r2 � 0.1810;
P � .0029) and peripheral (r2 � 0.4219; P � .0001) regions. Unlike other fiber tracts studied, there were no significant correlations of age with MD in the central (r2 � 0.05944; P �
.0986) and peripheral (r2 � 0.02135; P � .3271) regions of the splenium. In the splenium, FA also was not significantly correlated with age in the central (r2 � 0.000027; P � .9720)
and peripheral (r2 � 0.00175; P � .7800) regions. In the left corticospinal tract, MD was significantly correlated with age in the central (r2 � 0.3447; P � .0001) and peripheral (r2 �
0.4727; P � .0001) regions. FA was significantly correlated with age in the central (r2 � 0.2363; P � .0005) and peripheral (r2 � 0.1138; P � .0204) regions.
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in the tracts. Conversely, MD appeared to be more sensitive to
myelination, with lowest values in the myelinated central re-
gion of the corticospinal tract (CS-12). It would seem that
water diffusion is highly restricted at CS-12 compared with the
central region of the genu (G0) or splenium (S0) of the corpus
callosum, though G0 and S0 may have more coherent direc-

tionality for the fiber tracts and thus exhibit FA similar to
CS-12 with a higher MD.

To some extent, T2W intensity also provides a measure of water
diffusion in addition to providing the water content information.
Therefore, one would expect that the results shown in the measures
of T2W would be similar to that using MD. This is indeed the case in

Fig 4. Age-related changes in T1W and T2W signal intensity in the white matter tracts of the genu, splenium, and left corticospinal tract. In the genu, T1W signal intensity was not
significantly correlated with age in either the central (r2 � 0.03823; P � .2461) or peripheral region (r2 � 0.005794; P � .6543). T2W signal intensity significantly declined with age in
both the central (r2 � 0.09326; P � .0348) and peripheral regions (r2 � 0.2891; P � .0001). A similar overall pattern is present in the left corticospinal tract. T1W signal intensity was
not significantly correlated with age in either the central (r2 � 0.02530; P � .3541) or peripheral region (r2 � 0.005692, P � .6619) and T2W signal intensity decreases with age in both
the central (r2 � 0.5204, P � .0001.) and cortical peripheral (r2 � 0.3975; P � .0001) regions. In the splenium, a different pattern is evident. T1W signal intensity decreases with age
in the central (r2 � 0.1207; P � .0352) but not the peripheral region (r2 � 0.01349; P � .4937). T2W signal intensity significantly decreased with age in the peripheral region (r2 � 0.1818;
P � .0025), but not in the central region (r2 � 0.01067; P � .4848).
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our study in which similar patterns of T2W intensity and MD are
observed in the different regions (Figs 4, 6 [supplemental on-line
figure]).

One of the potential confounding factors for the interpreta-
tion of our results is the lack of independent measures of brain
water content, as regional differences in brain water content may
also alter the measures of MD, T1W and T2W, though would
have minimal effects on FA values. For example, Fig 2 suggests
that the central splenium (S0) has a significantly higher MD com-
pared with the central genu (G0), indicating that brain water dif-
fusion is more restricted in G0 than S0. In contrast, the FA value
in S0 is significantly higher than in G0, suggesting that it has a
higher anisotropic diffusion than the G0. Together, these findings
suggest that although water diffusion is more restricted in G0
than in S0, the water restriction at G0 is more isotropic in nature,
whereas anisotropic diffusion is more prominent in S0. Although
several plausible physiologic underpinnings can explain these
findings, one could speculate that the brain water content may be
higher and the biologic barriers less organized at G0 than in S0; as
a result, both MD and FA are lower at G0. This potential expla-
nation is further supported by the measures of T1W and T2W
signal intensity; S0 has a higher T1W and lower T2W signal in-
tensity than G0. Nevertheless, unless brain water content is mea-
sured independently, one must be cautious in interpreting results
of MD, T1W, and T2W.

Conclusion
This study demonstrates that development of the corpus cal-
losum and corticospinal tracts can be studied in unsedated
healthy neonates by using quantitative tractography of DTI
images. Overall, our approach provides very consistent MD
and FA values within specific regions of white matter tracts
and is able to detect small regional differences and age-related
changes in the neonatal period. In general, we found that cen-
tral regions of white matter tracts were more mature and or-
ganized than peripheral cortical regions, with lower MD and
higher FA values. White matter tracts of the splenium have a
different developmental trajectory than those of the genu, per-
haps reflecting differences in functional maturation.
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The next 4 chapters discuss the various pathologic condi-
tions of the mandible and maxilla; these include congenital,
infectious, and neoplastic lesions. Plain radiographic and CT
and MR features of several different conditions in each cate-
gory of diseases are discussed to familiarize their imaging char-
acteristics to both dental and other medical specialists. Al-
though I appreciate that this work is not intended to be a
textbook, it would have been helpful to include the clinical
management of the various disease conditions as well as the
cancer staging nomenclature of the different head and neck
neoplasms and their treatment options.

The chapter related to the temporomandibular joint gives
valuable practical information about the potential usefulness
of state-of-the-art MR compared with previous conventional
imaging modalities in practically all categories of diseases. In
selected cases, illustrations from surgical and autopsy speci-
mens that supplement the MR images are also very informa-
tive. The next 4 chapters elucidate the gamut of pathologic
conditions that pertain to regions closely related to the jaw.
These conditions include dental implants, maxillofacial
trauma, craniofacial deformities, and disorders of the parana-
sal sinuses. The chapter on dental pathology, including im-
plants, is a very useful overview for the medical profession
because this area is well known to dentists. The potential of
CT, including advanced conebeam techniques along with
high-quality reconstructed images, is provided.

A comprehensive overview of the various types of maxillo-
facial fractures and imaging modalities, including advanced
CT reconstruction modalities available in the different sub-
types of fractures, is discussed at length in the chapter on facial
trauma. In the chapter on disturbances of facial growth, a
thorough review and illustrations of craniofacial anomalies,
with emphasis on the complementary role of both 2D and 3D
CT imaging, are discussed.

The next 2 chapters focus on the evolving role and advan-
tages of advanced imaging techniques, namely CT and MR,
compared with traditional dental/conventional plain radio-
graphs (that dentists are more familiar with) in the diagnosis
of diseases of the paranasal sinuses and the adjacent maxillo-
facial soft tissues, which include lesions of the oropharynx or
oral cavity and deep neck spaces.

At the end of the book, a particularly useful chapter deals
with lesions of the surrounding tissues that the radiologist will
commonly encounter during the work-up of a patient with a
maxillofacial lesion. Clinical and imaging characteristics of a
potpourri of congenital, degenerative, inflammatory, infec-
tious, and neoplastic conditions are discussed.

Finally, the last chapter includes various interventional
procedures for the treatment of assorted pathologic condi-
tions of the orbitofacial region that the maxillofacial radiolo-
gist may be asked to perform. Indications and techniques of
procedures such as arthroscopy of the temporomandibular
joint, a sialogram, biopsy of the deep neck space, and emboli-
zation of a hemangioma are briefly covered.

In summary, the authors have achieved their goal of pro-
viding an introduction to the role of advanced imaging mo-
dalities, primarily CT and MR, in maxillofacial imaging. Over-
all, this book is well organized and has a unique format that
meets its intended purpose. It is a concise “atlas” that is simple
to use and to the point, with a plethora of high-quality, clearly

labeled illustrations. However, for particular topics in which
specific details are needed, the audience should be warned that
it may need to research other material as well. The authors are
encouraged to use this book as a foundation for future editions
of a more formal textbook on maxillofacial imaging. I recom-
mend this book to anyone who is interested in maxillofacial
radiology.
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Erratum
Please note that October article “Early Postnatal Development of Cor-

pus Callosum and Corticospinal White Matter Assessed with Quan-

titative Tractography” by Gilmore et al (2007;28:1789 –95) printed

with incorrect DOI number 10.3174/ajnr.A0651. The correct DOI

number is 10.3174/ajnr.A0751. This error has been corrected for the

on-line version of the article.
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